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Starting with Kolmogorov’s 1941 (K41) work 1), infinite 

Reynolds number flow is known to have velocity increments 

over a small distance r that vary roughly as the cubic root of r. 

Formally, such flow is expected to satisfy Euler’s partial 

differential equation, but the flow being not spatially 

differentiable, the equation is satisfied only in a distributional 

sense. Since Leray’s 1934 work 2), such solutions are called 

weak. Actually they were already present –very briefly– in 

Lagrange’s 1760/1761 work on non-smooth solutions of the 

wave equation 3). 

A major breakthrough has happened recently: 

mathematicians succeeded in constructing rigourously weak 

solutions of the Euler equation whose spatial regularity –

measured by their Hölder continuity exponent– is arbitrarily 

close to the value predicted by K41 (Isett 2018 4), Buckmaster et 

al. 2017 5)). Furthermore these solutions present the anomalous 

energy dissipation investigated by Onsager in 1949 (Ons49). 

We shall highlight some aspects of the derivation of these 

results which took about ten years and was started originally by 

Camillo de Lellis and Laszlo Szekelyhidi and continued with a 

number of collaborators. On the mathematical side the 

derivation makes use of techniques developed by Nash (1954) 

for isometric embedding 6) and by Gromov (1986, 2017) for 

convex integration 7, 8). Fortunately, many features of the 

derivation have a significant fluid mechanical content. In 

particular the successive introduction of finer and finer flow 

structures, called Mikados by Daneri and Szekelyhidi (2017) 9), 

because they are slender and jetlike. The Mikados generate 

Reynolds stresses on larger scales; they can be chosen to cancel 

discrepancies between approximate and exact solutions of the 

Euler equation. 

A particular engaging aspect of the construction of weak 

solutions is its flexibility. The Mikados can be chosen not only 

to reproduce K41/Ons49 selfsimilar turbulence, but also to 

synthesize a large class of turbulent flows, possessing, for 

example, small-scale intermittency and multifractal scaling. 

This huge playground must of course be explored numerically 

for testing all manners of physical phenomena and theories, a 

process being started in a collaboration between Leipzig, Nice, 

Kyoto and Rome. 
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