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A new PLIC-VOF method is proposed to improve the accuracy of VOF method in resolving fluid structures at
low grid resolution. The idea is to replace the surface normal calculation used in the PLIC, by using the surface
normal (SN) vector given by partial differential equations that are solved together with the advection algorithm.
The equations for the evolution of surface normal vector are derived, and examined by using the first-order and the
second-order upwind schemes. It is found that the normal vector with zero magnitude is located at the centroid
of a subgrid particle, to second-order accuracy. The motion of a subgrid particle is controlled by the arrival of
the normal vector with zero magnitude in the present PLIC/SN method, so that the particle can be translated
at the right speed without any additional treatment. This has been numerically verified by simulating a particle
of one tenth of grid spacing traveling in three different directions, in addition to a few typical test cases.

1. Introduction

The volume-of-fluid (VOF) is one of the most widely
used methods for the numerical simulation of interfacial
phenomena. In the VOF method, the evolution of an
interface is predicted generally by solving the following
advection equation

¢ +u-Ve =0, (1)

where u is the velocity. Function ¢ is the volume frac-
tion or color function at the discrete level. It is unity
in a cell filled with one phase, and is zero if the cell
lies in the other phase. Excellent reviews on this sub-
ject have been given by Rider and Kothe (1998) and
Scardovelli and Zaleski (1999) so only brief review of
the related methods will be given here. The majority
of VOF methods are based on two key procedures. One
is to reconstruct an interface in a cell, and the other to
advance the volume fraction in time and space. Both
are not trivial, because the volume fraction is discon-
tinuous across a sharply resolved interface. The VOF
methods are different mainly at the way to handle these
two procedures.

In VOF, the interface in a cell is not tracked, but re-
constructed and approximated by a simple geometry.
The simple line (piecewise constant) interface calcu-
lation (SLIC) assumes the geometry is a line parallel
to one of the grid lines. Currently most widely used
method is based on the piecewise linear interface calcu-
lation (PLIC). In PLIC, the surface normal vector, n,
is required to construct the linear interface

n-r+h=0, (2)

where h is the line constant. The normal vector is in-
ferred from the spatial distribution of ¢. If ¢ is a smooth
function, the normal vector satisfies

n=Ve. (3)

A few numerical methods have been proposed for the
calculation of the surface normal. Youngs (1984) used
the finite-difference method to discretize the gradient in
(3) directly. Puckett (1991) approximated the surface
normal vector from the volume fraction in a 3 x 3 block
of cells using an iterative method. The efficiency of the
iterative method was improved by Pilliod using an algo-
rithm, ELVIRA, which can reconstruct all linear inter-
faces exactly. The reconstruction using a spline inter-
face was attempted by Lépez et al. (2004). The volume
fraction is advanced from the geometry of the recon-
structed interface, by multidimensional /unsplit schemes

or one-dimensional/operator-split schemes. Continuous
efforts have been made to improve the advection algo-
rithms.

It is quite well known that the VOF method will be
accurate whenever the radius of curvature is large with
respect to the grid size. It will be less accurate for scales
comparable, and may lose all details for scales smaller
than one grid spacing. Consider fluid structures with
the characteristic length, d, say, the thickness of a thin
filament. If d reduces to the order of the grid size, Az,
the VOF method numerically splits or merges them. It
is called numerical surface tension by Rider and Kothe

(1998). Cerne et al. (2002) investigated the behavior
of the VOF method in simulating these small interface
structures, and found that the error of the interface re-
construction increases rapidly when d/Ax < 3. This
is in agreement with the fact that a minimum of three
grid cells are required to resolve a circular particle with
certain accuracy. They also found that the advection
errors occur as well. The small particle moves faster
for d/Ax < 2. Subgrid particles (d/Az < 1) were not
considered in their study.

For resolving subgrid particles, there are two difficul-
ties behind the PLIC-VOF method. Counsider an iso-
lated subgrid particle in a cell, as illustrated in Fig.
la. The subgrid particle generally stays in the cell, sur-
rounded by the dark phase in neighboring cells. The
first difficulty is that the gradient of volume fraction (3)
cannot provide a meaningful solution. How to update
the volume fraction is another difficulty. In order to en-
hance the accuracy of VOF at low grid resolution, more
information on the interface in addition to the volume
fraction is necessary. Lopez et al. attempted to resolve
thin filaments by using makers (2005).

This work tries to improve the accuracy of the PLIC-
VOF method at low grid resolution, and to expand its
capability in dealing with subgrid particles. The idea is
to treat the surface normal vector as independent vari-
ables that are integrated along with the advection algo-
rithm, instead of calculating them from (3).

For the purpose of resolving subgrid interfaces, the
equations for the surface normal vector are derived with-
out knowing the work of Raessi et al. (2007), who con-
sidered the same equations imposed with unit normal
constraint |n| = 1, and obtained accurate surface cur-
vatures for resolvable circular interfaces. In this work,
the treatment for surface normals has been developed
independently and treated in a very different way. We
came up with the same idea of using the unit normal at
the early stage of development, but soon it was found
that the unit normal creates a singularity at the center
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Fig. 1: A PLIC-VOF method may reconstruct a sub-
grid particle, given the phase volume and the normal
vector. However, the normal vector cannot be prop-
erly calculated from (3) only from the distribution of
volume fraction for the isolated particle. Even a vec-
tor is assigned as shown in (a) by certain rule based on
the volume fraction alone, the particle will be trapped
in the cell. Consider a moving particle as shown in
(b). Although the particle has traveled a short distance
within the cell, the PLIC-VOF method will reconstruct
the same linear segment in the cell because the volume
fraction and thus its distribution are unchanged.

of a circle, where the surface normal is discontinuous af-
ter normalization. The numerical error originating from
the singularity is a disaster that can pollute the solution
far from the center, and thus the method is not good
for tracking small particles. This is in agreement with
the observation that numerical errors for small particles
are large as commented by Raessi et al. The problem
was solved by using a smooth surface normal distribu-
tion with its magnitude decreasing to zero at the center,
which is not the unit vector. Another problem was en-
countered when dealing with an interface with sharp
corners (e.g. a square interface, to be shown in section
5) and for compressible flows with discontinuous veloc-
ity field. To solve the problem, the non-conservative
equations for surface normals are proposed and gen-
erally followed in our work (section 2). In short, the
present work is different from their work at (1) the non-
conservative equations for surface normals are proposed
and generally tested, and (2) unit normal constraint is
not imposed.

This paper is organized as follows. The advection
equations for surface normal vector are derived in sec-
tion 2. The relationship between the surface normal and
the motion of a particle is shown in section 3. All issues
on numerical discretization are documented in section
4. Both the first and the second order upwind schemes
are implemented. Their results are compared and dis-
cussed in section 5. The behavior of a subgrid particle
motion is investigated in section 5.4.

2. Equations for the evolution of surface normal

vector

Suppose function ¢ is smooth enough, the gradient of
(1) leads to,

(Vo) + V(u-Ve) =0.

Replacing V¢ by normal vector n as defined in (3), one
gets

n; +V(u-n) =0, (4)

which represents the evolution of the surface normal
vector. Unlike the original advection equation (1), the
surface normal equation is conservative for any velocity
field. The flux function is just the inner product of
velocity and surface normal vector. For two dimensional
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problems, the surface normal equation can be expressed
explicitly as, letting n = (I, m),

Iy +(ul+vm), =0,
m¢  +(ul +vm), =0.

(5)
For a smooth scaler field ¢ satisfying ¢,y = ¢yu, two
components of the surface normal vector then satisfy

ly =myg. (6)

The derived equation (5) does not contain the original
function ¢, which allows us to treat the surface normals
as two independent variables.

For 1-D problems, the equations degenerate to

lt +(U’l)w = 07 (7)

which is identical to the mass equation in the Euler
equations, if replacing ! by density. Its mathematical
and numerical behavior is therefore similar to the den-
sity in 1-D gas-dynamic problems.

For 2-D problems, it is of interest to see that every
equation in (5) contains only the spatial derivative in
its own direction, which is in general different from the
mass equation. Numerically, it implies that a numerical
scheme for (5) is lack of any stabilizing mechanism for
numerical disturbances possibly appearing in the other
direction. Using (6), equations (5) can be rewritten as

Iy +(ul)y + (vl)y
me  +(um)g + (vm)y, = mu, — luy,

= —mu, + lvy,

(8)

in which the left-hand side (LHS) of the equations is
the same as the 2-D mass equation. The source terms
on the right-hand side represent the velocity gradient
along an interface, or the rotation of the surface by the
velocity field. Notice that for a constant velocity field,
both equations in (8) degenerate to the 2-D linear wave
equation, but (5) does not. Both sets of equations are
to be investigated and compared numerically.

In this work, two surface normal components are
solved as they are, without normalizing them during the
course of integrating the equations, although the nor-
malization of a surface normal vector does not change
the orientation and the curvature of an interface. The
main reason is that the normalization creates one or
more discontinuities inside the particle, for example at
the center of a circle, thus reduces the numerical accu-
racy there. A continuous normal vector is also required
to maintain a small particle moving at the right flow
velocity (section 3.).

3. The surface normal and the motion of a small

particle

We shall consider the mathematical relationship be-
tween the surface normal and the motion of a particle in
this section. Let domain D occupied by a resolvable or
subgrid particle be a simply connected domain bounded
by the surface I' : ¢ = ¢. The following properties will
be proved for the surface normal of the scalar field ¢
that is smooth enough to define n = V.

Lemma: The surface normal in the domain D satisfies

/D ndA = 0. 9)

Proof: Consider the following integral,

/D ndA = /D (Vo)dA,
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one has, using the Stokes’ theorem for xz-component,

[ Ghraa= ¢ iy =0,

for ¢ = ¢. Other components can be proved to be zero
in the similar way.

This lemma states that no matter how the surface
deforms, the total normal vector in the particle is zero.
In order to characterize the size of a deformable particle,
we introduce length scale, d, such that the surface of the
particle can be bounded by a circle with the minimum
diameter d.

Theorem 1: The surface normal at the centroid of a
particle, n., is the zero vector within the error of O(d?),

n. =0+ O(d?).

Proof: Approximating n by the Taylor series expansion
at the centroid gives

/ ndA = / [, + (Vn) - (£ — 1) + O(d)]dA = 0,
D D

where O(d?) represents omitted second and higher
order terms. Using the definition for the centroid,

Jp (Vn) - (r —r.)dA =0, gives

/ e + O(d?)]dA = 0.
D

This completes the proof.

This theorem states that whatever the initial shape of
the particle is, if it is shrunk to be very small d — 0, the
surface normal vector at its mass center will be reduced
to the zero vector as well. In the other word, the zero
surface normal represents the location of the mass center
of the particle within the error of O(d?).

If velocity u is that of fluid particles, we have

Theorem 2: The zero surface normal moves at the
particle velocity of u.

Proof: Consider a circular fluid particle with its cen-
troid moving at the speed of u. Since the zero surface
normal is located at the centroid within the error of
O(d?), the zero vector moves at a speed of u + O(d?)
, and then the speed converges to u for the infinitely
small particle (d — 0).

A surface normal other than the zero vector gener-
ally does not move at the speed of u. In addition to the
translational motion, the surface normal vector under-
goes rotation, compression or expansion, which actually
represents the deformation of surfaces. This theorem
can be seen from the surface normal equations as well.
In the neighborhood of the zero vector, for [ — 0 and
m — 0, equations in (8) become, by omitting terms
with [ and m,

ly +ul, +vly, =0,

(10)
my  +umg +vmy, =0,

which show that both surface normals move at the speed
of u = (u,v). It is emphasized that the conservative
equations in (5), however, lead to

Iy +uly, +vm, =0,

my  Huly +vm,  =0.

(11)
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Although they become the same if relation (6) is sat-
isfied, it would be very tough to numerically integrate
equations (5) while maintaining (6). The idea of using
the non-conservative equations simply avoids this diffi-
culty.

In short, for a small particle of O(Ax), the centroid of
the particle moves at the same velocity as the zero sur-
face normal, to second-order accuracy. Whatever the
size and shape of a subgrid particle is, this principle al-
lows us to implicitly transport it by evolving the equa-
tion of surface normal (8), only if the particle follows the
zero vector. The zero vector is a 'marker’, not tracked
but evolved by the partial differential equations.

4. The PLIC/SN method

Coupling the VOF method with the surface normal
equations, the present volume tracking method is di-
vided to three procedures,

(a) to reconstruct the piecewise linear interface with a
given surface normal in each interface cell such that
the interface truncates the cell with a fractional
volume equaling the given phase volume in the cell
(section 4.1);

(b) to advance the phase volumes using a unsplit algo-
rithm with a limiter ensuring that all phase volumes
lie within bounds of [0, 2] (section 4.2);

(¢) to advance the surface normal vectors (section 4.3).

Procedures (a) and (b) are nothing but a typical PLIC-
VOF method except replacing the calculation of surface
normal by using the surface normal vector obtained in
(c). The surface normal vector is integrated by the finite
volume method, to be discussed in section 4.3. Since the
method combines the PLIC method with the surface
normal (SN) equations, we shall refer to the present
method as PLIC/SN in what follows.

The discretization procedures to be discussed are so
optimized and formulated that they can be readily im-
plemented on any grid system and coupled with a finite-
volume flow solver. The only input required from the
flow solver is the velocity field. All formulas and discus-
sions are valid for structured and unstructured grids,
except for the interface reconstruction procedure that
is valid only for regular rectangular cells. The whole
algorithm has been developed on a solution-adaptive
unstructured quadrilateral grid by Sun & Takayama
(1999), and coupled with a compressible flow solver.
However, only the results on the Cartesian grid with
specified velocity fields are reported in this paper for
the purpose of comparison and evaluation.

4.1 Representation of resolvable and subgrid

particles

The present method to resolve different sized particles
is illustrated in Fig.2, which contains a circular parti-
cle with diameter d varied from 1/2Az to 4Az. The
interface representation is the same as what has been
developed in the PLIC-VOF methods. The only differ-
ence is that the surface normal vector has been defined
and updated by solving the equations, so that surface
normal calculations are not necessary. With the surface
normal vector defined in the cell, any sized particles can
be unambiguously defined.

An interface is discretized by linear segments in the
cells that intersect with the interface. Each linear seg-
ment, starting from and ending at the cell edges, di-
vides the interface cell to two portions having the exact
volume of two phases. Two linear segments defined in
neighboring cells are in general not connected as shown
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Fig. 2: Representation of different sized circular par-
ticles: a) d/Axz = 1/2; b) d/Ax = 1; ¢) d/Ax = 2;
d/Az = 4.
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in Fig.2d, so that the segments themselves are not suffi-
cient to shape a closed interface for a particle. The dark
particle is actually bounded by the segments inside the
cells together with the wet portion of edges between
cells. The center of the subgrid circle shown in Fig.2a
is located at the grid node, so that the subgrid circle is
represented as a symmetric diamond. Its shape changes
with the location of its center (see more examples in
section 5, Fig. 4).

Given the surface normal vector n and the phase vol-
ume, the piecewise linear interface (2) is unique in a
cell. In general, the line constant h needs to be found
by iterative method, because the truncation volume is
often a nonlinear function of h, especially for axisym-
metric and 3-D geometries. For 2-D rectangular cells,
the non-iterative method is followed to find h.

In short, in order to represent subgrid as well as large
particles for any grid system in a simple way, what we
follow is no more than

(1) at most one linear material interface is located in
a control volume;

(2) more material interfaces are allowed to be aligned
with grid lines or faces between two neighboring
control volumes, which together with the interface
inside may form an isolated subgrid particle.

No additional restrictions such as the size of a parti-
cle, the distance between particles are imposed in the
present interface representation. Based the simple rules,
the topological changes of a particle can be implicitly
handled, as most VOF methods. If a particle is divided
into two portions with a distance between greater than
one grid spacing, it is regarded as the particle breakup,
or if the sides of two particles meet in the same cell,
they are merged automatically. For resolving two im-
miscible particles, the distance between them should be
large enough to avoid numerical coalescence.

For rule (ii), no special treatment is really needed
for a PLIC algorithm. The material interface aligned
with grid lines appears as a natural result of PLIC. One
example is seen in Fig. 4e. It is listed here because
this sort of subgrid particles, which are unable to be
properly handled in a traditional PLIC/VOF method,
might have been merged or deleted.

4.2 Advection of phase volumes

The advection equation (1) is solved by the finite vol-
ume method. The volume flux is evaluated in the direc-
tion normal to the grid line, and integrated in a unsplit
manner. Given a flow field u, the advection equation is
rewritten as

¢t + V- (up) = ¢V -u, (12)

and
¢t + V- (ug) =0, (13)

for imcompressiable velocity field. Equation (13) is dis-
cretized by using the finite volume method,

Q= = Y (undr ), (14)

j
where u,, is the outward normal velocity across grid in-
terface j, and ¢y is the volume fraction of phase k de-

fined at the grid interface, satisfying >, ¢p = 1. Q4 is
the volume of phase k, (0, = ¢4 (2, satisfying

Q=) Q. (15)
k
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Without losing generality, the phase with the smaller
volume is denoted as slave volume, €25, and the other
phase master volume, 2,,. In the present method, the
slave volume is integrated by (14),

Q= QF =3 d(ungsAt);, (16)
J

where ® is a limiter function to ensure
Qe 0,9 (17)

The limiter function is defined such that the outflow of
the slave volume should be no more than that inside,

Q n
o7 for f, > QY
1 otherwise,

(18)

where f, is total outflow volume flux of the slave volume,

fo= D (und,Ab);.

Jyun >0
The master volume is updated by using (15),
Qrtl = — Qo (19)

Clearly, if the slave volume satisfies (17), then Q7" lies

within the range as well. It is readily seen that Q71
is always non-negative with the limiter function. If the
volume change is below than /2, which is true for the
CFL number below 1/2, the slave volume starting from

Q< Q)2 satisfies QT < Q. In short, the limiter
function guarantees the exclusion of the overshoot and
undershoot for both phases from numerical results.

It is noted that the @ limiter is different from the
redistribution algorithm adopted in some VOF algo-
rithms. The redistribution algorithm is often triggered
when an abnormal volume that is beyond [0, ] is found
in the solution, and then redistribute the volume to
somehow empirically chosen cells nearby. The & lim-
iter is to adjust the volume flux such that the abnormal
volume will not appear. The limiting method solves
the problem beforewards, but the redistribution method
does afterwards. The limiting method is general for any
advection scheme used to evaluate volume fluxes.

Once the interface has been constructed, as discussed
in section 4.1, the volume flux (u,¢,At); at grid line j
is defined geometrically by calculating the volume or the
area cut by the grid line shifted upstream by —u,,At,
where u,, is the normal velocity defined in the upstream
cell. When coupled with a compressible flow solver, the
velocity can be defined by the Riemann solver. In this
work, since the exact velocity field is specified in all test
cases, u, is simply taken as the exact solution located
at the center of the grid line. The method to evalu-
ate volume fluxes is 'naive unsplit’. A modification is
made following DDR method proposed by Harvie and
Flectcher (HA2001). Although the DDR method is less
accurate than the advection algorithms that take into
account the corner-coupled fluxing, we shall show that
the accuracy obtained is comparable when it is coupled
with the surface normal equations.

The minimum particle that can be resolved is re-
stricted only by the machine accuracy in evaluating vol-
umes and volume fluxes, and in the algorithm the slave
volume satisfying

Q,/Q > 107N/ (20)
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is treated as an interface cell. N is the total cell number,
and N'/2 gives a simple estimate of the amplification of
the round-off error due to two dimensional geometric
calculations. The round-off error is set to be 10! for
double precision floating-point computations.

4.3 Discretization of surface normal equations

Both conservative form (5) and non-conservative form
(8) are implemented and investigated in this study. For
the sake of clarity, they are rewritten as

n; + (F1), + (F2), =8, (21)

where for the conservative form (5)

and for the non-conservative form (8)

Fl:(ul) F, — < Ul) S (—mvx-l-lvy).
um vm mu, — luy,

(23)
System (21) is discretized by the finite volume

method. Consider a control volume §2; bounded by dis-
crete faces with outward surface normal s = (s, sy).

1 N
() =8; — o > F;,
J

where the numerical flux F]' is approximated by the
upwind scheme, depending on the direction of normal
velocity u,, = u-s,

;=

{ Fis, +Fysy, if u, >0 (24)

F{s, +FJs,, otherwise.

Velocity and surface normal at faces are required to de-
fine the numerical fluxes.

4.3.1 First-order scheme For the first-order
scheme in space, velocity and surface normal used
to determine the numerical flux are simply those lo-
cated in the control volume on the upwind side. The
source terms are discretized using the central difference
scheme.

4.3.2 Second-order scheme For achieving
second-order accuracy in space, the surface normal and
velocity at grid interfaces are located at the center of
face, rj . They are interpolated from the center of the

volume, following the MUSCL method,

-t = gyt -+ -+
M +_Mi + (VM) - (xf =177,
where M represents both the velocity and surface nor-
mal required to define the numerical flux. Superscripts
—7T indicates the values are defined from left and right
sides (or upstream and downstream) respectively. For

example, M ;’+ are those values located at r;7+ respec-

tively. In this work, they are defined at the cell center.

(r§— r; ") is the distance between the center of the grid
interface and the location of values defined. It is simply
a Taylor series expansion in multidimensions.
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In solving the hyperbolic conservation laws, the lim-
iter is often used to suppress possible numerical oscil-
lations around discontinuities. To investigate the in-
fluence of the limiter on the solution of surface nor-
mal equations, the MINMOD slope limiter for limit-

ing the gradient (VM); " is also implemented. The
source terms are discretized using the central difference
scheme.

For achieving second-order accuracy in time, the two-
step Runge-Kutta method is followed for the surface
normal equations. However, the interface reconstruc-
tion and the volume flux evaluation, described in sec-
tions 4.1 and 4.2, are done only once based on the sur-
face normal at the last time step.

4.3.3 Initial and boundary conditions For solv-
ing the IBV problems of surface normal equations, ap-
propriate initial and boundary conditions must be speci-
fied for [ and m. For a given interface, only the direction
of surface normal vector is available nearby. Others have
to be defined. An intuitive way to define these values
is to construct a smooth surface function ¢, such that
¢ = c represents the interface. Two types of particles,
circle and square, are tested in this paper, and their def-
initions are summarized as below. For a circle centered
at (zo,Yo), we set

1 ‘ .
8(,9) = 3l = 20)? + (v~ o)?]
and then differentiate it,

l(&?,y) =T — Zo,

m(az,y) =Y — Yo, (25)

which are the initial conditions for a circle. Similarly
counsider a square centered at (xo,yo) with sides parallel
to grid lines, represented by

(y — yo)2
(x — mp)?

P(x,y) = %

one gets two surface normals for squares,

0 ly — yo| > |z — w0
l(z,y) = T — To ly — Yol < |z — z0] (26)
%(55—330) ly = yo| = |z — z0,
and
y—vo |y—yol> |z — o
m(z,y) = 0 ly — Yol < |z — z0] (27)

%(y —%) |y —¥ol|= |z — x0].

Notice that the definitions are independent of the size of
the circle or square, and it suggests the surface normals
for any sized particles are solved equally.

Physical boundary conditions for surface normal vec-
tor of a real material interface attached on a wall depend
on many factors, especially surface tension and gravity,
which is beyond the scope of this paper. We shall fo-
cus on the interfaces inside the domain. In practice, for
wall, inlet and outlet boundaries, we simply set

o _om _
ds 0s

ly — yo| > |z — xol;
ly — yo| < |z —x0l;
%[(ﬂf —20)*+ (y—v0)?] |y —yo| = |z — z0],
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Fig. 3: A schematic of a 1-D subgrid particle motion
controlled by the surface normal vector. The arrow al-
ways points from the bright phase to the dark phase in
the left column, and its direction is determined by the
sign of the averaged surface normal over the cell, the
value of which is shown by the dashed line in the right.

where s is the direction normal to the boundary. This
approximation is trivial for walls in real fluid flows, be-
cause both the velocity and the numerical fluxes are
always zero there.

As an example, the trajectories for different sized
moving particles are recorded and compared in Fig. 6.
The diameter is varied from 0.1 to 12.8Az, covering
the whole range from under-resolved to resolved scales.
Two types of location error can be identified. One is the
'leap’ error due to the interface reconstruction, which
dominates in the motion of very small subgrid parti-
cles, as shown by the stepwise solid line with circles for
d/Az = 0.1. Another is the error resulting from the vol-
ume advection algorithm, as shown by the dashed line
for d/Ax = 12.8. The advection error is much smaller
and with a high frequency. For the particles between,
these two errors are coupled. Nevertheless, it is clear
that the motion of a subgrid particle has been properly
resolved within the error of O(Az). Detailed formula
and more numerical tests are shown in the full paper.

5. The advection of a subgrid particle

It has been shown that the zero normal vector moves
at fluid velocity in section 3. We will investigate how
a subgrid particle can follow the zero vector using the
PLIC/SN method.

Consider a 1-D subgrid particle as shown in Fig. 3.
Without losing generality, it is assumed that the surface
normal points from the bright to the dark phase. Sup-
pose the particle is initially located at face A, x = xo.
We use a linear function

l(x) = o — xo

with zero exactly located at x = xo as the initial con-
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dition for surface normal vector. The averaged surface
normal over the cell bounded by faces A and B is then
positive, as indicated by the dashed line in the top-
right figure. Given the volume of the bright particle
and the positive surface normal, the interface is then re-
constructed on the left following the PLIC, as shown in
Fig. 3a. Notice that the commonly used surface normal
calculation for this small subgrid particle is senseless.

Now consider the motion of the particle. Suppose
the flow moves at a constant speed to right, traveling
through one cell in three steps. The evolution of the sur-
face normal is shown in the right column. It starts with
a positive value, and gradually reduces to be negative
after the zero vector moves across the central point of
the cell. After three steps, the zero vector has traveled
from face A to face B, at the same speed as the flow.
The corresponding reconstructed interface is shown in
the left column. In the first step, from Fig. 3ato b, since
the subgrid particle is attached on the face A, there is
no volume flux through face B, thus the volume of the
particle is unchanged. At this moment, the surface nor-
mal is still positive, so that the reconstructed interface
is the same. Once the surface normal changes its sign,
as seen from Fig. 3b to c, the particle is reconstructed
on the right. The particle leaps from one side to the
other side of the cell. In the third step, the particle
is moved to the right neighboring cell by the advection
algorithm, returning to the initial state but shifted by
one grid cell. The procedure above will be repeated.

It is clear that the motion of a subgrid particle is made
possible by both the leap controlled by the PLIC/SN
and the volume advection through faces. The motion
of a subgrid particle in two dimensions is more inter-
esting and complicated. Fig. 4 shows all sequential
steps of a particle of d/Az = 0.4 moving at velocity
(u,v) = (1.0,0.5). For this illustration, the CFL number
is taken as 1/8 based only on z-velocity, so that the par-
ticle is supposed to move from one node to the other in
16 steps, traveling two grid cells in z-direction, and one
cell in y-direction. In most steps, the particle appears
as a combination of small pieces in 2-4 cells. Although
these small pieces are reconstructed separately by PLIC
algorithm in each cell, they are always connected with-
out splitting. It is emphasized that the translation is
realized simply by a typical PLIC algorithm with the
surface normal defined in the cell. No additional treat-
ment is necessary.

Using the PLIC/SN method, for 1-D geometry the
subgrid particle actually stays on the upstream side
of the cell before the normal vector is reversed, which
happens exactly after the arrival of the zero vector.
The leap motion in the cell and the volume advection
through faces are not coupled. It is different for a gen-
eral 2-D geometry. Although the sign of [ is reversed
between Fig. 4d and f, the orientation and location
of the reconstructed interface are evolved gradually as
shown from Fig. 4b to f. The volume flux through the
right face is not zero in Fig. 4e, so that a small portion
is advected to the right cell as seen in Fig. 4f. The
same is seen in y direction from Fig. 4h to j when the
sign of m is reversed. As a result of this coupling be-
tween the reconstruction and the volume advection, the
subgrid particle is located in favor of the downstream
sides, which is clearly seen in Figs. 4p and . As in-
terpreted by Cerne et al. (2002), using a typical PLIC-
VOF method, the location error will be accumulated,
resulting in the particle moving faster.

In order to evaluate the accuracy of the motion of a
subgrid particle in two dimensions, three directions are
tested. A particle of d/Ax = 0.1 is initially located
at (0.25,0.25), and put in three velocity fields, (u,v) =
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Fig. 4: Translation of a 2-D subgrid particle of
d/Az = 0.4 in the velocity field (v = 1,v = 0.5), all
sequential steps. The particle is supposed to move from
one node to the other node in 16 steps, traveling two
grid cells in z-direction, and one cell in y-direction.
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Fig. 5: Trajectories of a subgrid particle (d/Az = 0.1)
in thee velocity fields: (a) (uw,v) = (1.0,0.0);
(b)(u,v) = (1.0,0.5); (c) (u,v) = (1.0,1.0); (d) the his-
toric location (z,y) of the particle in velocity field (b).

023000000000000A0
Ab-4

Tab. 1: Location errors for particles in three velocity
fields after translating over 16 cells in z-drection. The
errors are normalized by grid size Az.

(d/Az) (u,v) = (1.0,0.0) (1.0,0.5) (1.0,1.0)

0.1 0.030 0.059 0.059
0.4 0.110 0.175 0.184
1.6 0.204 0.162 0.184
6.4 0.013 0.182 0.010

(1.0,0.0), (1.0,0.5) and (1.0,1.0). They represent three
typical directions on a square mesh as shown in Figs.
dabc. The centroid location of the particle at every
time step is plotted, so these discrete points form the
trajectory of the particle motion. For evaluating the
location of a particle, the centroid of its portion, r;,
in every cell is first calculated, and then the centroid of
the whole particle, r., is the area-weighted value,

1
ro==o (1),
ZQ] j

where ; is the particle volume in cell j. The formula
is exact for arbitrarily shaped particles.

It is seen that the particle moves along the grid lines
nearest to the exact trajectory, and gathers around the
grid nodes. Although it follows the exact solution, as
shown in Figs. 5ac in space, it actually does not march
with the exact one in time. A space-time figure is shown
in Fig. 5d for velocity (u,v) = (1.0,0.5). Since the same
velocity is used in x-direction, the historic z-location is
very similar for all three velocities. The particle moves
in small steps from one node to the other. A periodic
location error of Az /2 can be seen.

The trajectories for different sized particles are also
compared, and plotted in Fig. 6. The diameter is var-
ied from 0.1 to 12.8Ax, covering the whole range from
under-resolved to resolved scales. Two types of location
error can be identified. One is the 'leap’ error due to the
interface reconstruction, which dominates in the motion
of very small subgrid particles, as shown by the stepwise
solid line with circles for d/Az = 0.1. Another is the
error resulting from the volume advection algorithm, as
shown by the dashed line for d/Az = 12.8. The advec-
tion error is much smaller and with a high frequency.
For the particles between, these two errors are coupled.

The location error of particles for all velocities is mea-
sured at t = 0.5, after the particle has traveled exactly
16 cells in z-direction. The error is defined as the dis-
tance between the numerical location and the exact one.
Errors normalized by the grid size Az are recorded in
Table 1. At t = 0.5, the particle is supposed to ex-
actly locate at a grid node, so the periodic error is the
minimum. The data mainly reflects the errors from
the advection of volume fluxes. For subgrid particles
of d/Azx < 1, the location error increases with the di-
ameter. For the large particle of d/Ax = 6.4, the error
varies significantly with the flow direction, because of
the naive unsplit advection algorithm used. Neverthe-
less, all errors are within a small fraction of one grid
spacing. It is clear that the location error is not accumu-
lated using the PLIC/SN method, or all sized particles
are advected at a right speed.

By analyzing the results above, the location error of
a subgrid particle can be estimated as,

€max = £AT/2 4+ d + O(Az?), (28)
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Fig.  6: Trajectories of particles with diameter

d/Az varying from 0.1 to 12.8 moving at velocity of
(u,v) = (1.0,0.5). The first two cycles are shown. In
each cycle, the particle is advected by two grids in «
direction, and one grid in y direction.

where three errors are originated from the interface
reconstruction, the advection and the surface normal
equations respectively. The first is the leap error. The
location of a particle within the cell is solely determined
by the PLIC together with the normal vector. The sub-
grid particle is reconstructed either on the left or the
right side depending upon the location of zero vector.
If the zero vector represents the exact location of the
particle, the location error originated from this recon-
struction procedure is no more than Az/2, which is the
first term. The error originated from the advection al-
gorithm will depend on the algorithm used and the lo-
cation of interface, so d is taken as the simple estimate
of the maximum error, if it is smaller than the grid
spacing. The numerical error in integrating the surface
normal equations is assumed to be second order accu-
rate. The deviation of the exact center of the particle
from the zero vector is O(d?) as discussed in section
3., which is smaller than O(Az?) for a subgrid particle.
The last term O(Az?) represents these two errors. All
numerical results above show that the location errors in
two dimensions are within the bound (28).

It is noted that a more precise location of the sub-
grid particle can be reconstructed in the cell, by taking
into account the location of the zero vector that can
be obtained from the distribution of the normal vector.
However, this necessitates non-trivial modifications in
PLIC and advection algorithms.

6. Concluding remarks

The PLIC/SN method introduced here in the PLIC-
VOF methods is unique in that the surface normal vec-
tor is directly solved by integrating the equations for it.
Given point-valued surface normals, the method pro-
vides better, at least comparable, accuracy for particles
at low to medium resolutions, although the less accu-
rate advection algorithm (DDR) is adopted in this work.
Grid convergence has been obtained for particles with a
diameter of few grid cells, which are generally regarded
as under-resolved. It is of interest to see that a subgrid
particle can be advected by using the method. The zero
surface normal moves at the speed of a subgrid parti-
cle. The particle is numerically reconstructed following
the zero surface normal in the PLIC/SN method, so
that it can be advected at the correct speed. Therefore,
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the method is standalone to resolve and track any sized
particles.

Two sets of equations for surface normal vector have
been investigated and compared. One is conservative,
and the other is not. The first-order and the second-
order upwind schemes are used to integrate both equa-
tions. For the second-order scheme, the influence of
the limiter is also investigated. It is found that a high-
order scheme based on the non-conservative equations is
most robust, and generally provides the best accuracy.
The limiter reduces the accuracy of the second order
schemes in resolving smooth interfaces, and for solving
the conservative equations it can be catastrophic even
for smooth interfaces.

The implementation of the method in existing PLIC-
VOF codes is quite straightforward. One needs only to
replace the surface normal calculation in the PLIC by
using the surface normal vector solved by the equations.
A Dbetter accuracy at medium and high resolutions is
expected if coupled with an advection algorithm with
corner flux treatment.

As far as computational cost is concerned, it is seemly
that the method solving two equations in the whole
domain is more expensive than the traditional method
with only local operations. We shall consider two cases.
If the domain is covered by many particles or interfaces,
there will be no much difference between a global and
a local operation. In this case, the interfaces are gen-
erally resolved by a coarse grid. The accuracy for par-
ticles at low grid resolution is a more important issue.
On the other hand, if the domain is covered by very few
interfaces, the narrow-band idea developed in level-set
methods would be useful. However, for both cases, a
general way to enhance the efficiency is to couple the
PLIC/SN method with a solution-adaptive grid tech-
nique. The overhead required to integrate equations on
the portion of coarse grids is just a small fraction of
total computation.
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