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Numerical prediction of flow instabilities in shallow basins
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Non-symmetric flow patterns have been observed experimentally under particular geometries even in symmetric
shallow rectangular basins. In the present study, it is attempted that the symmetric and non-symmetric flow
patterns are numerically simulated with the spatially-filtered Navier-Stokes equations using a standard Smagorin-
sky model. The governing equations were solved with a finite volume method with a collocated grid system.
As a result of the computations, it was shown that the symmetric and non-symmetric flow patterns are success-
fully predicted in two typical geometries. Meanwhile, there remain some discrepancies between experiments and
predictions on velocity distributions, which suggest the necessity to improve the top boundary conditions and
subgrid-scale modelings.

1. Introduction
The flow instabilities in wide and shallow open chan-

nels have been observed in laboratory experiments (1)

and their behaviors were successfully predicted with
shallow-water equations (2). In the present study,
the applicability of a three-dimensional computational
method is examined when using a standard Smagorin-
sky model and assuming that the free-surfaces are fixed
free-slip boundaries.

The governing equations were solved with a finite vol-
ume method with a collocated grid system. A fifth-order
non-oscillative conservative scheme was applied to the
convection terms of momentum equations in the implicit
C-ISMAC (3) method. The pressure fields were calcu-
lated with the C-HSMAC method (4), which can keep
|∇u| sufficiently small in all fluid cells.

As a result of the computations, it was shown that the
symmetric and non-symmetric flow patterns are success-
fully predicted in two typical geometries. Meanwhile,
there remain some discrepancies between experiments
and predictions, which suggest the necessity to improve
the top boundary conditions and subgrid-scale model-
ings.

2. Numerical procedures

2.1 Governing equations
The governing equations are spatially-filtered conti-

nuity and momentum equations for incompressible New-
tonian fluids given by
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where p and ui are pressure and filtered velocity com-
ponent in xi direction, while ρ, fi and ν are density,
acceleration of body force and kinematic viscosity, re-
spectively, which are all constant values. The strain rate

tensor Dij is defined as
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A standard Smagorinsky model (5) is utilized to rep-
resent τij in Eq.(2), which is given by

τij = −2νeDij (4)

where νe is the turbulent viscosity

νe = (CsfsΔ)2 |D| (5)

with Cs = 0.173,

Δ = (Δx Δy Δz)1/3, (6)

and

|D| =
√

2DijDij (7)

The damping coefficient fs is given by

fs = 1 − exp
(−y+

A+

)
(8)

where A+ = 25 and

y+ =
lu∗
ν

(9)

with the distance l from the nearest wall (except free-
slip top boundary), friction velocity u∗ and kinematic
viscosity ν.
2.2 Discretization and solution method

The numerical procedures of an SMAC method con-
sist of three stages; prediction, pressure-computation
and correction stages. At the prediction stage, the ten-
tative velocity components u∗

i are calculated at the cen-
ter of the fluid-cells with a finite-volume method. In
this procedure, Eq.(2) is discretized with the C-ISMAC
method (3), which was derived from the implicit SMAC
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method (6). The equation discretized with respect to
time is given by
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where α and β are parameters whose ranges are 0 ≤
α, β ≤ 1. With the relationship,

u∗
i = un

i + ũi (11)

Eq.(10) is transformed to the following equation:
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Since ũi is relatively small amplitude compared with
un

i , we can apply a simple first-order spatial discretiza-
tion method to the left-hand side of Eq.(12), while a
higher-order scheme to the right-hand side. The convec-
tion terms are calculated with a fifth-order conservative
scheme (7). The C-ISMAC method enables us to derive
easily the simultaneous equation system from the im-
plicit form of the left-hand side of Eq.(12) as well as to
preserve numerical accuracy by applying a higher-order
scheme to the explicit form on the right-hand side of
the same equation.

After solving the equation system of ũi, which is de-
rived from the discretized equation of Eq.(12), u∗

i is de-
termined with Eq.(11). The u∗

i located at the center of
the fluid-cell is then spatially interpolated on the cell
boundary. Before this interpolation, pressure-gradient
term calculated at the cell center is removed from u∗

i in
order to prevent pressure oscillation as

ûi = u∗
i +

1
ρ

∂pn

∂xi
Δt (13)

The cell-center velocity ûi, which is calculated with-
out the pressure-gradient term, is spatially interpolated
on the cell boundaries by a suitable function fb. Af-
ter this procedure, the pressure-gradient terms that are
estimated on the cell boundaries are added to the in-
terpolated velocity, fb(ûi). Thus, we obtain the cell-
boundary velocity component ub,i as follows:

ub,i = fb(ûi) − 1
ρ
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The velocity component un+1
b,i at n + 1 time-step is de-

fined by
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ρ

∂pn+1

∂xi

∣∣∣∣
b

Δt (15)

Subtracting Eq.(14) from Eq.(15), we have
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where φ = pn+1 − pn. Substitution of Eq.(16) into
Eq.(1) yields the following equation of φ :
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At the pressure-computation stage, Eq.(17) is solved
with the C-HSMAC method (4). The C-HSMAC
method enables us to obtain the pressure and cell-
boundary velocity components, which satisfy the incom-
pressible condition |∇u| < εD in each computational
cell, where εD is a given threshold. While the final re-
sults of the C-HSMAC method are similar to those of
the SOLA method (8), it has been proved that the com-
putational efficiency of the C-HSMAC method is largely
improved. The relationships in the C-HSMAC method
are given by
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pk+1 = pk + φ (19)
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where the superscript k stands for the iteration step-
number of the C-HSMAC method.

The discretization of Eq.(18) yields simultaneous lin-
ear equation system of φ, which is solved with the
BiCGSTAB method (9). The iterative computation
using the above three equations is completed when
|∇u| < εD is satisfied in all fluid-cells.

3. Applicability of prediction method

3.1 Computational conditions

Fig.1 shows the plane view of the rectangular basin, to
which the present computational method was applied.
The origin of the orthogonal coordinates is set on the
bottom of the upstream right hand side corner, where
x, y and z are streamwise, transverse and vertically-
upward directions, respectively. Computations were
performed for two geometries, case−3×4 and case−6×2,
in which a pair of the lengths (L, B) shown in Fig.1
are (3m, 4m) and (6m, 2m), respectively. The depth
of water is 0.2 m in both cases. The average inlet ve-
locity u0 is 0.14 m/s. In the computations, as shown in
Fig.2, the additional zones were set up on upstream and
downstream boundaries to simulate the channels used
in experiments, whose longitudinal lengths are both 0.5
m.

2 Copyright c© 2009 by JSFM



23rd CFD Symposium
G9-4

Fig. 1: Plane view of rectangular basin and coor-
dinates

Fig. 2: 3D computational area

The numbers of fluid cells in computations in (x, y, z)
directions are 160×160×8 for case−3×4 and 280×80×8
for case−6 × 2 including the four boxes on the corners
shown in Fig.2. All boundaries are treated as non-slip
walls except top boundary that is a fixed free-slip wall.
The inlet velocity is uin = u0 + u′, where u′ is the
fluctuation component given with the uniform random
number ranging from −0.2u0 to 0.2u0. The pressure
boundary conditions are given by ∂p/∂x = 0 except
the outlet boundary. On the other hand, ∂u/∂x = 0
and p = 0 are imposed on the outlet boundary of the
downstream channel.

The computations start from initial static flow field
at t = 0 until t = 1,000 sec. with the time increment
Δt = 2.5 × 10−2 sec. Since the grid-scale flow fields
are obtained at each time step, the averaged results are
calculated from t = 800 to 1,000 sec.

Fig.3 shows the view of the calculated results in
case−6× 2, which are averaged values during the above
time period. As shown in this figure, while 3D results
are obtained in the predictions, 2D velocity fields on top
boundaries are mainly used in the comparisons with ex-
periments.

Fig. 3: Averaged 3D flow patterns of predicted
results (case−6 × 2)

3.2 Comparison with experimental results

Figs.4 and 5 show the two-dimensional flow patterns
in case−3 × 4 on the top surfaces obtained in experi-
ments (1) and predictions, respectively. In this case, it
can be seen that the symmetric flow patterns arise in
experiments and calculations.

Fig. 4: Experimentally-observed flow patterns on
free-surface (case−3 × 4)

Fig. 5: Averaged 2D flow patterns of predicted
results on top boundary (case−3 × 4)

On the other hand, Figs.6 and 7 show the similar 2D
flow patterns for case−6×2. In this case, non-symmetric
patterns appear in both experiments and predictions.
Whilst the main flows attach on the left-hand side in
the computations, which is upside-down compared with
experiments, it is not an essential problem, since the
attached side is not deterministic depending on the in-
stabilities in the flows.
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Fig. 6: Experimentally-observed flow patterns on
free-surface (case−6 × 2)

Fig. 7: Averaged 2D flow patterns of predicted
results on top boundary (case−6 × 2)

Fig.8 show the predicted unsteady flow patterns for
case−3 × 4 on the top boundary. As shown in these
figures, the incoming flows impinge on the downstream
side and then two circulating flows are formed on both
sides of the main stream. While some organized eddy
motions are found in the snapshots of Fig.8, the overall
flow patterns are preserved until 1,000 sec. This results
in the averaged velocity field shown in Fig.5, which is
nearly symmetric similarly to the experiments shown in
Fig.4.

The development of non-symmetric flow patterns for
case−6× 2 is shown in Fig.9. As shown in Figs.9 (a) to
(d), the initial average flow field is approximately sym-
metric, while a large circulating flow arises after around
t = 250 s. and then the main flow patterns become
non-symmetric.

Figs.10 to 12 show the distribution of u along y di-
rection for case−3 × 4 on the sections of x = 1.0, 1.5
and 2.0 m, respectively. The predicted results seem to
be less diffusive and have more large velocity gradients
compared with experiments.

Figs.13 to 15 shows the similar velocity distributions
for case−6×2 on the sections of x = 1.5, 3.0 and 4.5 m,
respectively. In this case, it can be seen that the pre-
dicted inlet flow tends to progress more straightly and
its distance to the reattachment point is larger com-
pared with experiments. As a result of the quantitative
comparisons, some discrepancies are found in the veloc-
ity distributions. This fact might suggest that the neces-
sity to improve the treatment of free-surface boundary
conditions and subgrid-scale modelings.

(a) t = 25.0 (s)

(b) t = 100.0 (s)

(c) t = 200.0 (s)

(d) t = 1000.0 (s)

Fig. 8: Predicted flow patterns and isolines for
2D vorticities on top surface (case−3×4)
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(a) t = 25.0 (s)

(b) t = 50.0 (s)

(c) t = 100.0 (s)

(d) t = 150.0 (s)

(e) t = 250.0 (s)

(f) t = 1000.0 (s)

Fig. 9: Predicted flow patterns and isolines for
2D vorticities on top surface (case−6×2)

Fig. 10: Distribution of u in section x = 1.0 (m)
(case−3 × 4)

Fig. 11: Distribution of u in section x = 1.5 (m)
(case−3 × 4)

Fig. 12: Distribution of u in section x = 2.0 (m)
(case−3 × 4)
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Fig. 13: Distribution of u in section x = 1.5 (m)
(case−6 × 2)

Fig. 14: Distribution of u in section x = 3.0 (m)
(case−6 × 2)

Fig. 15: Distribution of u in section x = 4.5 (m)
(case−6 × 2)

Conclusions
Two typical flow patterns observed in rectangular

basins were numerically simulated with the spatially-
filtered Navier-Stokes equations using a standard
Smagorinsky model. The governing equations were
solved with a finite volume method with a collocated
grid system. As a result, it was shown that the sym-
metric and non-symmetric flow patterns are success-
fully predicted in two cases. On the other hand, some
discrepancies were found in the velocity distributions
between experiments and calculations. In the future
studies, it is suggested that more investigations may be
necessary to improve the treatment of free-surfaces and
subgrid-scale models.
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