血管異方性を考慮した超弾性体管内流の オイラー型流体構造連成シミュレーション

Full Eulerian fluid-structure coupling simulations of fluid flow in anisotropic hyperelastic tube

○ 長野 直大,東大院,〒113-8656 東京都文京区本郷 7-3-1, E-mail: nagano@fel.t.u-tokyo.ac.jp
 杉山 和靖,東大工,〒113-8656 東京都文京区本郷 7-3-1, E-mail: sugiyama@fel.t.u-tokyo.ac.jp
 竹内 伸太郎,阪大工,〒565-0871 大阪府吹田市山田丘 2-1, E-mail: shintaro@mech.eng.osaka-u.ac.jp
 伊井 仁志,東大工,〒113-8656 東京都文京区本郷 7-3-1, E-mail: sii@fel.t.u-tokyo.ac.jp
 高木 周,東大工(理研),〒113-8656 東京都文京区本郷 7-3-1, E-mail: takagi@mech.t.u-tokyo.ac.jp
 松本 洋一郎,東大工,〒113-8656 東京都文京区本郷 7-3-1, E-mail: ymats@mech.t.u-tokyo.ac.jp
 Naohiro NAGANO, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656
 Kazuyasu SUGIYAMA, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656
 Shintaro TAKEUCHI, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka, 565-0871
 Satoshi II, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656
 Shu TAKAGI, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656
 Yoichiro MATSUMOTO, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656

An interaction problem between a fluid and elastic walls is solved by a full Eulerian fluid-structure coupling method. The method employs a uniform grid system for both fluid and solid and it does not require any mesh generarion or reconstruction, aming for facilitating the practical bio-mechanical fluid-structure analysis. The availability and applicability of the developed method to systems involving complex geometries driven by a pressure gradient are shown through a comparison between the obtained numerical results and theoretical prediction, and a grid convergence test. Further, for considering a more realistic situation, an anisotropic blood vessel model is implemented and convergence performance of the method is shown.

1. はじめに

近年,医療応用の観点から,粘性流体中における固体 の変形・運動を扱った流体構造連成シミュレーションが 注目されている.特に,CTやMRIといった画像診断機 器の技術的向上に伴い,人体内部の情報をより正確かつ, 簡単にボクセルデータとして取得可能になってきたこと から,患者個人のボクセルデータに対して流体構造連成 シミュレーションを行うことで,各人の治療効果の予測 や治療方針の決定に役立てられると期待されている.さ らに,患者の全身ボクセルデータを用いた流体構造連成 シミュレーションを行うことで,患者個人にテーラーメ イド型医療を提供することが期待されている. 生体内の 複雑な形状に適応するため,固体の変形をラグランジュ 的に記述する有限要素法(FEM)がもっぱら用いられて

生体の流体構造連成シミュレーションでは,生体内の 複雑な形状に適応するため,固体の変形をラグランジュ 的に記述する有限要素法(FEM)がもっぱら用いられて きた⁽¹⁾⁻⁽³⁾.FEM による解析では,CT や MRIから得 られたボクセルデータを元にメッシュを生成し,時間ス テップごとに,メッシュの再構成が必要となる.患者個 人のボクセルデータを用いたFEM による流体構造連成 シミュレーションとしては,脳動脈瘤付近の血流の解析 ^{(4),(5)}などがある.

また, Matsunaga や Yokoi らは血管壁を剛体壁とし, 脳動脈瘤付近の流れの解析を診断画像から得られたデー タを直接扱える手法で行ってきた^{(6),(7)}

タを直接扱える手法で行ってきた^{(6),(7)} 一般に,血管壁はいくつかの異なる力学的性質を示す 層からなることが知られており,血管内膜の変性や崩壊 が脳動脈瘤の発生原因となる可能性,血流によってさら に変性が進行し,脳動脈瘤となる可能性が指摘されてい る^{(8),(9)}.そのため,血管壁の変形を考慮した血流シミュ レーションが脳動脈瘤といった血管が一定の形状を保た ない場合において重要となる.

これらの理由から,本研究では,血管の変形を考慮し, かつ診断画像から得られるボクセルデータを直接扱える 血流シミュレーション手法の開発を目的としている.これ までに,杉山らが開発した,オイラー型定式化を用いた 差分法による流体構造連成シミュレーション手法^{(18),(19)} を拡張し,血管壁を等方性の超弾性体として模擬し,本 計算手法の妥当性の検証などを行ってきた⁽²¹⁾が,一般 に,血管壁はその力学的性質が異方的であることが知られ ており,様々な血管壁モデルが提案されている⁽¹⁰⁾⁻⁽¹⁵⁾. 本論文では,これまで開発してきた計算手法の概要とそ の検証,さらに血管異方性の導入,その検証について述 べる.

2. 数値計算モデル

2.1 支配方程式

本研究では,多くの生体に対する流体構造連成シミュレーション^{(16),(17)}と同様,非圧縮性の流体・固体を仮定し,流体・固体の密度は同じとしている.流体・固体は以下の質量保存式:

$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0, \tag{1}$$

運動量保存式:

$$\rho\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}\right) = -\boldsymbol{\nabla} p + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}' - \frac{\Delta P}{L} \boldsymbol{e}_x \qquad (2)$$

に従う.ここで, $v(=(v_x,v_y))$ は速度ベクトルを, ρ は密度,pは駆動圧力からの圧力の変動分, σ' は偏差コーシー応力テンソル, $-\Delta P/L$ は駆動圧力, e_x はx方向への単位ベクトルである.また,これ以降'はテンソルの偏差成分を表す.

2.2 構成方程式

流体・固体を区別するために, VOF(Volume-of-Fluid) 法のアイディアに基づいた関数 ϕ_s を導入する . ϕ_s は

$$\phi_s = \begin{cases} 1 & \text{(solid)} \\ 0 & \text{(fluid)} \end{cases}$$
(3)

となる固体の体積率を示すスカラー関数である.数値計算 上では,流体・固体を単一の連続体と捉え,偏差 Cauchy 応力 σ' を ϕ_s を用いて各相の応力を体積平均することで 定義する:

$$\boldsymbol{\sigma}' = (1 - \phi_s) \, \boldsymbol{\sigma}'_f + \phi_s \boldsymbol{\sigma}'_s. \tag{4}$$

ここで,添え字fは流体を,sは固体を示す.流体のモデ ルとしてニュートン流体,固体のモデルとしてneo-Hooke 粘弾性体を用いる.流体・固体の応力はそれぞれオイラー 場において,以下のように表せる:

$$\boldsymbol{\sigma}_f = 2\mu \boldsymbol{D}, \tag{5}$$

$$\boldsymbol{\sigma}_s = 2\mu \boldsymbol{D} + G\boldsymbol{B}. \tag{6}$$

ここで, μ は粘性係数, $m{D}(=rac{1}{2}(m{
abla}m{v}+m{
abla}m{v}^T))$ は速度勾配 テンソル, G は横弾性係数, $\tilde{B}(=F \cdot F^T)$ は左 Cauchy-Green 変形テンソル ($F(=\partial x/\partial X)$ は変形勾配テンソル) である.

また,物理量 ϕ_s , B は以下の輸送式に従う:

$$\frac{\partial \phi_s}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \phi_s = 0, \tag{7}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{B} = \boldsymbol{L} \cdot \boldsymbol{B} + \boldsymbol{B} \cdot \boldsymbol{L}^{T}.$$
 (8)

ここで, $L(=\nabla v)$ は速度勾配テンソルである.式(8)は, 物理量 Bが恒等的に Oldroyd 速度が零となることを示す. また,杉山らにならい^{(18),(19)},計算安定化のため,

$$\tilde{\boldsymbol{B}} = \phi_s^{1/2} \boldsymbol{B} \tag{9}$$

を定義し,実装上では,偏差 Cauchy 応力 σ' は

$$\boldsymbol{\sigma}' = 2\mu \boldsymbol{D}' + \phi_s^{1/2} \boldsymbol{G} \tilde{\boldsymbol{B}}' \tag{10}$$

としている.これ以降,偏差 Cauchy 応力が式(10)に表 される計算モデルを等方性モデルと呼ぶ.

血管異方性の導入 2.3

本研究では,血管のオイラー型流体構造連成シミュレーション手法の基礎として,血管壁を等方的な超弾性体と してモデル化して手法を開発してきた⁽²¹⁾.しかしなが ら、一般に、血管壁は異なる力学的性質を持つ Intima, Media, Adventitia の 3 層から構成されること、力学的 性質として異方性を示すことなどが知られており、本論 文では血管異方性を考慮した材料モデルの導入を行う. 血管の材料モデルとしては、Fung らが提案したモデル

(11) や,それに基づいたモデル(13)などが良く知られている.Fungらは指数関数を用いて歪みエネルギー関数を 定義し, in vitro での実験値と良く合うモデルの構築を 行った. Fungらが構築した材料モデルは一様な異方性材 料からなるのに対し, Holzapfel らは, 血管壁を構成する 層ごとに,等方的な超弾性体と,異方性を持つらせん状の繊維によって構成される材料モデルを考え,定式化を 行った⁽¹⁵⁾.なお, Fungらのモデルと同様, 異方性の成 分については指数関数を用いて歪みエネルギー関数を定 義している

本論文では、2.2節に記した今まで開発してきた計算モ デルを拡張し, Holzapfel らの異方性血管モデルの導入を 行う.なお, Holzapfelらは, 血管壁全体の力学的性質と 175. なの, Holzapiel らは, 血管壁室体の力学的性質として Intima がほとんど効果を持たないとして, 血管壁を Media, Adventitiaの2層からなる固体として3次元モ デルの構築を行っているが,本論文では,まずは1層の 2次元モデルとして導入を行う. オイラー場で固体の応力を表現するために,初期状態 の繊維の単位ベクトル a_0 ,時間tにおける繊維のベクト ル $a(= F \cdot a_0)$, さらにaを用いて,

$$\boldsymbol{H}_{a} = \boldsymbol{a} \otimes \boldsymbol{a} = \boldsymbol{F} \cdot (\boldsymbol{a}_{0} \otimes \boldsymbol{a}_{0}) \cdot \boldsymbol{F}^{T}$$
(11)

を定義する . H_a は現配置によって定義されるテンソルの ため , H_a を用いて固体の応力を以下のようにオイラー 場で表現できる :

$$\boldsymbol{\sigma}_{s} = 2\mu \boldsymbol{D} + G\boldsymbol{B} + 2k_{1} \exp\left(k_{2} \left(\mathbf{I}_{a} - 1\right)^{2}\right) \left(\mathbf{I}_{a} - 1\right) \boldsymbol{H}_{a}.$$
 (12)

ここで, k_1,k_2 は定数, $I_a = trH_a$ である. H_a はB同様,Oldroyd速度が恒等的に零となる物理 量であり,以下の輸送式に従う:

$$\frac{\partial \boldsymbol{H}_a}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{H}_a = \boldsymbol{L} \cdot \boldsymbol{H}_a + \boldsymbol{H}_a \cdot \boldsymbol{L}^T.$$
(13)

また, B 同様, 計算安定化のため,

$$\tilde{\boldsymbol{H}}_a = \phi_s^{1/2} \boldsymbol{H}_a \tag{14}$$

を定義し,実装上では,偏差 Cauchy 応力 σ' は

$$\boldsymbol{\sigma}' = 2\mu \boldsymbol{D}' + \phi_s^{1/2} G \tilde{\boldsymbol{B}}' + 2\phi_s^{1/2} k_1 \exp\left(k_2 \left(\mathbf{I}_a - 1\right)^2\right) \left(\mathbf{I}_a - 1\right) \tilde{\boldsymbol{H}}_a \quad (15)$$

としている.これ以降, 偏差 Cauchy 応力が式 (15) に表 される計算モデルを異方性モデルと呼ぶ.

2.4 計算条件

図1に示したような,弾性体壁を含む波状流路内の非 定常ストークス流れの解析を行う.そのため,式(2)の 対流項は無視しているが,式(7),(8),(13)の対流項はそれ

ぞれの物理量の時間発展を追うため、考慮している。 計算領域は上下を剛体壁に囲まれており、弾性体と剛体壁の境界において no-slip 条件を課している。そのた め,その境界上において, 式(8)の各成分は,以下のよ うに展開できる:

$$\tilde{B}_{xx} = 1 + \tilde{B}_{xy}^2, \tag{16}$$

$$\tilde{B}_{yy} = \phi_s^0 = 1, \qquad (17)$$

$$\frac{\partial \tilde{B}_{xy}}{\partial t} = \frac{\partial v_x}{\partial y}.$$
 (18)

ここで,添え字⁰は初期値を示す.また,式(16)の導出 に非圧縮性材料の条件である, det *B* = 1 を用いた. 同様に式(13)の各成分は,以下のように展開できる:

$$\frac{\partial \tilde{H}_{axx}}{\partial t} = 2\frac{\partial v_x}{\partial y}\tilde{H}_{axy},\tag{19}$$

$$\tilde{H}_{ayy} = \tilde{H}_{ayy}^{0}, \qquad (20)$$

$$\frac{\partial H_{axy}}{\partial t} = \tilde{H}_{ayy}^{0} \frac{\partial v_x}{\partial y}.$$
 (21)

また, x 方向に波長 L の周期境界条件を課している. 図 1 の変数は本研究では $H_0 = h_0 = 1$, $k = \pi/4$, L = 8 $\delta = 0.3$ としている

L = 8, $\delta = 0.3$ としている. 初期条件として速度場と圧力場は静的平衡状態を仮定し, ϕ_s を各格子ごとに計算して与える.また初期状態において, 変形勾配テンソル F は,

$$\boldsymbol{F} = \boldsymbol{I} \tag{22}$$

となるため, 左 Cauchy-Green 変形テンソル B の初期 値は

$$\boldsymbol{B} = \boldsymbol{I},\tag{23}$$

 H_a の初期値は

$$\boldsymbol{H}_{a} = \boldsymbol{I} \cdot (\boldsymbol{a}_{0} \otimes \boldsymbol{a}_{0}) \cdot \boldsymbol{I}$$
(24)

として与えられる.また,初期状態の繊維の単位ベクト μ_{a_0} を

$$\begin{cases} \boldsymbol{a}_{0} = \begin{pmatrix} \frac{1}{\sqrt{1+\delta^{2}k^{2}\cos^{2}\left(\frac{2\pi x}{L}\right)}} \\ -\frac{\delta k\cos\left(\frac{2\pi x}{L}\right)}{\sqrt{1+\delta^{2}k^{2}\cos^{2}\left(\frac{2\pi x}{L}\right)}} \end{pmatrix} (0 \le y \le 2) \\ \boldsymbol{a}_{0} = \begin{pmatrix} \frac{1}{\sqrt{1+\delta^{2}k^{2}\cos^{2}\left(\frac{2\pi x}{L}\right)}} \\ \frac{\delta k\cos\left(\frac{2\pi x}{L}\right)}{\sqrt{1+\delta^{2}k^{2}\cos^{2}\left(\frac{2\pi x}{L}\right)}} \end{pmatrix} (2 \le y \le 4) \end{cases}$$
(25)

と与える.これは,図2に示すように界面に沿った繊維を仮えしている.

また、本論文を通じて、t = 0以降、一定の圧力勾配 - $\Delta P/L$ (= 1)を系全体の駆動力として与える、

2.5 数値計算法

全ての方程式は,矩形固定スタッガード格子上で差分 法により解かれる.空間微分の離散化については式(7) と(8),(13)の対流項には五次精度のWENO法を,それ 以外の項には二次精度の中心差分法を用いる.時間進行 法については,偏差 Cauchy応力テンソルには二次精度 の Crank-Nicolson法を,それ以外の項については二次精 度の Adams-Bashforth法を用いる.速度場のソレノイダ ル条件を満たしながら,運動量保存式の時間進行を行う ために,非圧縮性流体の標準的解法である SMAC 法を用 いる.また,x 方向に高速フーリエ変換を用いて圧力の Poisson 方程式を解く.

3. 等方性モデルの検証

3.1 収束性の検証

杉山らは超弾性体粒子を含む流れ場の解析を行い,固体の材料モデルとして neo-Hooke 体や線形 Mooney-Rivlin体,St.Venant-Kirchhoff 体を用いて,本計算手法が格子解像度に対して一次の誤差精度を有していることをすでに示している.しかしながら,計算条件が異なるため,本計算条件下における格子解像度に対する誤差精度を確認する.

固体体積率関数 ϕ_s は界面において不連続な値の分布を 持つため,陽に界面位置を定義することができない.そ のため,流れ場が十分に発達したと考えられる t = 30 の 計算結果を用いて,以下のような操作を行い,界面位置 を定義する.なお,t = 30における流れ場の様子を図3 に示す. まず,底面からの弾性体壁の高さをH(x)とし,以下

まず,底面からの弾性体壁の高さを *H*(*x*)とし,以下のようにフーリエ展開した形で表す:

$$H(x) = H_0 + \sum_{n=1}^{\infty} \left(H_{cn} \cos \frac{2\pi nx}{\lambda} + H_{sn} \sin \frac{2\pi nx}{\lambda} \right).$$
(26)

このとき基底関数の直交性から,フーリエ係数は以下の ように表せる:

$$\begin{pmatrix} H_{cn} \\ H_{sn} \end{pmatrix} = \frac{2}{L} \int_0^L \mathrm{d}x \ H(x) \begin{pmatrix} \cos \frac{2\pi nx}{L} \\ \sin \frac{2\pi nx}{L} \end{pmatrix}.$$
 (27)

ここで,固体体積率関数 ϕ_s がヘビサイド関数状に変化することを利用し,フーリエ係数は,以下のように表せる:

$$\begin{pmatrix} H_{cn} \\ H_{sn} \end{pmatrix} \simeq -\frac{2}{L} \int_0^{H_0 + h_0} \mathrm{d}y \int_0^L \mathrm{d}x \, \frac{\partial \phi_s}{\partial y} y \begin{pmatrix} \cos \frac{2\pi nx}{L} \\ \sin \frac{2\pi nx}{L} \end{pmatrix}.$$
(28)

離散化された上式は次式のようになる:

$$\begin{pmatrix} H_{cn} \\ H_{sn} \end{pmatrix} \simeq -\frac{2}{L} \sum_{i} \sum_{j} \left(\phi_s(i, j+1) - \phi_s(i, j) \right)$$
$$y(j+1/2) \begin{pmatrix} \cos \frac{2\pi n x(i)}{L} \\ \sin \frac{2\pi n x(i)}{L} \end{pmatrix} (\Delta x). \quad (29)$$

得られたフーリエ係数を元に以下のようにスペクトルを 定義する:

$$X_n^{N_x} = \sqrt{H_{cn}^2 + H_{sn}^2}.$$
 (30)

G = 2の場合について,最高解像度 $(N_x \times N_y = 1024 \times 512)$ の計算結果から得られるスペクトルと,他の解像度から得られるスペクトルとの相対誤差を図4に示す.図4から,低次のモードに関して,相対誤差は格子解像度にほぼ比例して減少していることが分かり,弾性体壁が剛体壁に固着し,歪みが蓄積されていく本計算条件下においても,格子解像度に対してほぼ一次の誤差精度を有していることが分かる.

3.2 妥当性の検証

図1のように流体・弾性体壁の界面が波状となってい る問題を対象として,本計算条件下における本計算手法 の妥当性の検証を行う.本計算条件下においては,系全 体は一様な圧力勾配で駆動されており,一定時間経過後, 系全体は定常状態に達する.そこで,定常状態時の界面 位置の理論解と得られた計算結果を比較することで,妥 当性を検証する.

当性を検証9る. 本研究では大変形を伴う超弾性体を扱っており,弾性体の変形に伴う幾何学的非線形影響が,一般には無視できないため,厳密解を求めることは困難である.本研究では,流体相でレイノルズ数が十分に小さく,長波近似が成り立ち,また弾性体相で線形弾性体とみなせる程度に変形が微小となる条件において,定常状態における弾性体の変位量を潤滑理論と組み合わせた線形解析により求めた.

No.2. 図 5 に G = 10の場合について,流れ場が十分に発達 し,ほぼ定常状態に達したと考えられる,t = 30の超弾 性体壁の変形形状を固体体積率関数 ϕ_s のコンターとし て示す.また,比較のため超弾性体壁の初期形状を点線 で示す.なお,格子点数はx,y方向それぞれについて $N_x = 256$, $N_y = 128$ であり,時間解像度は $\Delta t = 0.001$ とする.

たに得られた理論解 $^{(21)}$ と,計算結果から得られた界面位置を比較することで,妥当性の検証を行う.図6に比較した結果を示す.得られた理論解と,計算結果から得られた流体と弾性体壁の界面位置は,図6に示されるように良く一致する.これは理論解を導く上で用いた仮定がG = 10の弾性体によく合っていたことを示すと同時に,本計算手法が本計算条件下においても妥当であることを示している.以上から本計算手法が圧力勾配により駆動される複雑形状を有する流れ場に対しても十分な精度で適用可能なことが分かる.

4. 異方性モデルの検証

ここから , 2.3 節において述べた , 弾性体の応力として

ここから、2.3 節において述べた、弾性体の応力として 血管異方性を導入したモデルを用いる場合について、計 算手法の検証を行う. まず、3.1 節と同様に界面位置をフーリエ解析により求 め、スペクトルを定義、同様に最高解像度の計算結果と の相対誤差を図7に示した.なお、計算条件はG = 2, $k_1 = 1$, $k_2 = 1$ とし、十分流れ場が発達したと考えられ るt = 30の計算結果を用いた.このときの流れ場の様子 を図8に示す.図7に示されるように、低次のモードに 関して、相対誤差が格子解像度にほぼ比例して減少して おり、3.1 節と同様、応力が式(15)と表現される血管異 ち性を導入した際にも、格子解像度に対してほぼ一次の 方性を導入した際にも,格子解像度に対してほぼ一次の 誤差精度を有していることが分かる.

また,式(15)において係数 k1 を小さくすることで, 計算結果は等方性モデルの計算結果に近づいていくと考えられる.そこで,十分流れ場が発達したと考えられる t = 30の計算結果を用いて, k_1 の値を変化させ,界面位 置を比較した図9に示す.図9から分かるように, k_1 の 値を減少させることで,等方性モデルの結果に近づいて いくことが分かる.

以上の結果から,異方性モデルに関しても,本計算手 法の収束性を確認できる

なお、図9のx = 8付近に見られる界面の振動の要因 として、主にせん断応力による弾性体の振動や、VOF関 数の界面表現精度法などが挙げられる.これらの問題は、 著者らが別途取り組んできているシャープです声に (20) と陰解法 (20) との組み合わせにより高精度に解析で きると考えられる.

まとめ 5.

5. まこの 既存のオイラー型流体構造連成手法を拡張し,血管壁 を模擬した超弾性体管内流の数値解析を行った.圧力勾 配により駆動される,超弾性体壁に囲まれたストークス 流れ場の流体構造連成問題を取り扱った.血管壁を等方 的な超弾性体とした計算結果からは,定常状態の界面位 置から収束性を確認し,定常解と理論解の良い一致から 妥当性を確認した.さらに,Holzapfelらのモデルを基に, 血管異方性の導入を行い,収束性の検証を行った.

今後は,さらに異方性モデルの検証を進め,三次元モ デルの開発を行っていく.

参考文献

- (1) Taylor, C.A., Hughes, T.J.R. and Zarins, C.K., "Finite element modeling of blood flow in arter-ies", Comput. Methods Appl. Mech. Engrg. Vol.158(1998), pp.155-196.
- (2) Torii, R., Oshima, M., Kobayashi, T. and Takagi, K., "Numerical simulation system for blood flow in the cerebral artery using CT imaging data", JSME Int. J. Ser. C Vol.44(2001), pp.982-989.
- (3) Zhang, Q. and Hisada, T., "Analysis of fluidstructure interaction problems with structural buckling and large domain changes by ALE finite element method", *Comput. Methods Appl. Mech. Engrg.* Vol.190-48(2001), pp.6341-6357.
- (4) Takizawa, K., Christopher, J., Tezduyar T.E. and Sathe, S., "Space-time finite element computation of arterial fluid-structure interactions with patientspecific data", Int. J. Numer. Meth. Biomed. En-gng. Vol.26(2010), pp.101-116.
- (5) Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E., "Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes", Com-put. Methods Appl. Mech. Engrg. Vol.198(2009), pp.3613-3621.

- (6) Matsunaga, N., Liu, H. and Himeno, R., "An immersed-based computational fluid dynamics method for haemodynamic simulation", JSME Int. J. Ser. C Vol.45(2002), pp.989-996.
- (7) Yokoi, K., Xiao, F., Lui, H. and Fukasaku, K., "Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cere-bral artery with multiple aneurysms", J. Comput. Phys. Vol.202(2005), pp.1-19.
- (8) Stehbens, W.E. "Etiology of intracranial berry aneurysms", J. Neurosurg Vol.70(1989), pp.823-831.
- (9) Mizutani, T., Kojima, H., Asamoto, S. and Miki, Y. "Pathological mechanism and three dimensional structure of cerebral dissecting aneurysm", J. Neurosurg Vol.94(2001), pp.712-717.
- (10) Vaishnav, R.N., Young, J.T. and Patel, D.J., "Dis-tribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment", Circ. Res. Vol.32(1973), pp.577-583.
- (11) Fung, Y.C., Fronek, K. and Patitucci, P., "Pseudoelasticity of arteries and the choice of its mathematical expression", Am. Vol.237(1979), pp.620-631. J. Physiol.
- (12) Takimizawa, K. and Hayashi, K., "Strain energy density function and uniform strain hypothesis for arterial mechanics", J. Biomech. Vol.20(1987), pp.7-17.
- (13) Humphrey, J.D., "Mechanics of arterial wall: Review and directions", *Critical Reviews in Biomed.* Engr. Vol.23(1995), pp.1-162.
- (14) Delfino, A., Stergiopulos, N., Moore, J.E. and Meister, J.-J., "Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation", J. Biomech. Vol.30(1997), pp.777-786.
- (15) Holzapfel, G.A., Gasser, T.C. and Ogden, R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models", J. Elasticity Vol.61(2000), pp.1-48.
- (16) Liu, W.K., Liu, Y., Farrell, D., Zhang, L., Wang, X.S., Fukui, Y., Patankar, N., Zhang, Y., Bajaj C., Lee J., Hong J., Chen X. and Hsu H., "Immersed finite element method and its applications to biological systems", Comput. Methods Appl. Mech. Engrg. Vol.195(2006), pp.1722-1749.
- (17) Huang, W.-X. and Sung, H.J., "An immersed boundary method for fluid-flexible structure interaction", Comput. Methods Appl. Mech. Engrg. Vol.198(2009), pp.2650-2661.
- (18) Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. and Matsumoto Y., "Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow", Comput. Mech. Vol.46-1(2010), pp.147-157.
- (19) Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. and Matsumoto Y., "A full Eulerian finite difference approach for solving fluid-structure coupling prob-lems", J. Comput. Phys. published online (doi: 10.1016/j.jcp.2010.09.032)

- (20) Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S. and Matsumoto, Y., "An implicit full Eulerian method for the fluid-structure interaction problem," *International Journal for Numerical Methods in Fluids* (DOI: 10.1002/fld.2460)
- (21) Nagano, N., Sugiyama, K., Takeuchi, S., Ii, S., Takagi, S. and Matsumoto Y., "Full Eulerian finitedifference simulation of fluid flow in hyperelastic wavy channel", *Journal of Fluid Science and Tech*nology Vol.5(2010), No.3, pp.475-490.

Figures

Fig. 1: Schematic of the flow field

Fig. 2: Initial fiber orientation. Grey: elastic object, white: fluid. The fiber is plotted on a scale of one to five at every 8 and 4 grid points in x and y directions, respectively.

Fig. 3: Flow field at t = 30 for the material of G = 2. Red: elastic object, white: fluid, blue vectors: velocity vectors. The velocity vectors are plotted at every 16 and 4 grid points in x and y directions, respectively.

Fig. 4: Decay of the relatice error with respect to the case of $N_x \times N_y = 1024 \times 512$ for the material of G = 2.

Fig. 5: Contour of solid volume fraction ϕ_s for the case of G = 10. Red: elastic object, white: fluid. The initial shape of the elastic wall is indicated by broken line.

Fig. 6: Comparison of the interface geometries between the simulation results and theoretical analysis for the case of G = 10 together with the initial geometry of the wavy elastic wall. Simulation results are plotted at every 4 grid points in x direction.

Fig. 7: Decay of the relatice error with respect to the case of $N_x \times N_y = 1024 \times 512$ for the material of G = 2, $k_1 = 1, k_2 = 1$.

Fig. 8: Flow field at t = 30 for the material of G = 2, $k_1 = 1$, $k_2 = 1$. Red: elastic object, white: fluid, blue vectors: velocity vectors, black lines: fiber. The velocity vectors are plotted at every 16 and 4 grid points in x and y directions, respectively. The fiber is plotted on a scale of one to five at every 8 and 4 grid points in x and y directions, respectively.

Fig. 9: Comparison of the interface geometries by varying k_1 for the material of G = 2, $k_2 = 1$. Simulation results are plotted at every 3 grid points in x direction.