タイヤ周りの流れ場におけるディンプルの効果に関する数値的研究 Numerical Study on the Effect of Dimple in the Flow Field around Wheel

 木村 祐太,東理大院,東京都千代田区九段北 1-14-6, E-mail: j4510621@rs.kagu.tus.ac.jp 鈴木 正也,東理大,東京都千代田区九段北 1-14-6, E-mail: masaya@rs.kagu.tus.ac.jp 山本 誠,東京大,東京都千代田区九段北 1-14-6, E-mail: yamamoto@rs.kagu.tus.ac.jp 児玉 勇司,横浜ゴム(株),神奈川県平塚市追分 2-1, E-mail: kodama-yuji@hpt.yrc.co.jp 小石 正隆,横浜ゴム(株),神奈川県平塚市追分 2-1, E-mail: koishi@hpt.yrc.co.jp
Yuta KIMURA, Grad. School of Tokyo Univ. of Science, 1-14-6 Kudankita, Chiyodaku, Tokyo Masaya SUZUKI, Tokyo Univ. of Science, 1-14-6 Kudankita, Chiyodaku, Tokyo Makoto YAMAMOTO, Tokyo Univ. of Science, 1-14-6 Kudankita, Chiyodaku, Tokyo Yuji KODAMA, Yokohama Rubber Co., Ltd., 2-1 Oiwake, Hiratsukashi, Kanagawa

In resent years, low fuel consumption attracts much attention in the automotive industry from the viewpoint of environmental problems. Since a wheel is a significant drag source, it is necessary to investigate the drag coefficient during driving condition. Existing researches on automotive wheels have been usually carried out for the purpose of rolling resistance improvement, and few aerodynamical studies on the drag reduction of wheels have been performed. Therefore, the motivation of the present study is to conduct numerical investigations on the effects of wheels on the flow field by using some wheel models and to suggest the guideline for advanced wheel development. The visualized numerical results show that dimples located on side wall decrease the drag coefficients, and the interaction between tire rotation and wheelhouse has strong influence on the aerodynamic drag of a wheel.

1. 緒言

近年、地球温暖化や石油燃料の枯渇などの環境問題の観点から 自動車業界では低燃費性が注目されている. 自動車の全抵抗の割 合は外観形状45%,タイヤ回転30%,床下流れ25%となっている. この中で全抵抗の最も大きな割合を占める外観形状は研究すべき 点ではあるが、居住性(快適性)や自動車のデザインと大きく関係 しており、空力的に理想的な形にするのは困難である. そこで、 次に大きな割合を占めるタイヤの回転に目が向けられている. し かし、これまでのタイヤに関する研究は、主に転がり抵抗改善を 目的として行われており、空力の観点から研究されたケースはあ まり見られない.従って、一層の低燃費を目指すにはタイヤの抵 抗係数(Cn値)について調べることが重要だと考えられる. 車体の Cp値に関しては、タイヤの回転によって低減されることが風洞実 験で実証されている.しかしながら、風洞実験では非常に高いコ ストと時間が要求されるという問題の他、タイヤの接地領域付近 の流れを正確に測定することが難しいという問題があり(1)、その 抵抗低減のメカニズムについては不明な点が多い、近年では、CFD を用いてタイヤ周りの流れの解明が行われているが、数値計算で はタイヤ形状を簡略化することが多く、サイドウォールの形状を 考慮した研究は見られない(2),(3).

そこで本研究では、CFDにより得られた結果を可視化すること により、回転するタイヤのサイドウォール部のディンプルパター ンが流れ場に与える影響を詳しく調査し、低抵抗なタイヤの開発 に指針を提供することを目的とする.ディンプルパターンとして、 一般的な半球型を模した構造を採用し、ディンプルのない通常の タイヤとの比較を行う.得られた結果より、タイヤの回転はタイ ヤ背面の圧力を増加させ、ディンプルの付加は主流に対してタイ ヤ回転による側方の流体の巻き込み量を強くさせ、タイヤ前面の 圧力を減少させることにより Cp 値を減少させることが示される.

2. 数値計算手法

本研究では、三次元非圧縮性乱流場を取り扱う.支配方程式として、連続の式、ナビエ・ストークス方程式を、乱流モデルにはLaunder-Spalding (1974)の高レイノルズ数型 k-εモデルを用いた.速度・圧力解法として SMAC 法、時間項にオイラー陰解法を適用した.空間離散化には節点中心有限体積法を用いており、方程式の全ての移流項に三次精度風上差分法、その他の項には二次精度中心差分法を採用した.格子作成には、「Gridgen」を用い、壁近傍にはヘキサメッシュ、その他の領域にはテトラメッシュを使用した.また、流れ場計算のソルバーには文部省 IT プログラムにより開発された「Front Flow/red」を用いた.

3. 計算対象及び計算条件

3. 1. 計算対象

図1に計算の対象とするタイヤの諸元を示す.表中のレイノルズ数は, *Re* = *UD/v*(*U*は主流速度,*D*はタイヤ直径, *u*は空気の動粘度)と定義した.本研究では、タイヤのサイドウォールパターンが流れ場に与える影響の調査を行うため、サイドウォールパターンを付けない基本タイヤモデル(base model)と、サイドウォールパパターンを付けない基本タイヤモデル(base model)と、サイドウォール部に半球型ディンプルを周方向に敷き詰めたタイヤモデル(dimple model)の2通りを用いて計算を行った.図2にこれらタイヤモデルの形状を示す.また、タイヤ周りの流れを詳細に調査するため、空中にタイヤモデル」に加え、より実際に近い「簡易車体モデル」を用いて計算を行った.

空中タイヤモデルでは、タイヤと地面の干渉を排除することに より、タイヤ回転とサイドディンプルの効果を把握することを目 的として計算を行った.地上タイヤモデルでは、タイヤと地面の 干渉による流れ場への影響に着目した.簡易車体モデルでは、実 際の車体の走行状態に近い状態として、タイヤ・地面・ホイール ハウスによる影響が混在する状況におけるサイドディンプルの影 響を解明するために行った.図3に簡易車体モデルの概要を示す.

Fig.1 Geometry of base wheel model

(b) dimple

Fig.2 Schematic diagram of wheel model

Fig.3 Geometry of simplified body model

本研究では簡易車体モデルに、Tamas ら⁽²⁾により調査されたホイ ールハウス付形状モデルを使用した. さらに, 空中タイヤモデル 及び、地上タイヤモデルのケースについては、タイヤ回転を無視 した stationary と、タイヤ回転を考慮した rotating の 2 つの状態に ついて計算を行い、簡易車体モデルにおいても同様の状態で計算 を行った.従って、総計算数は12ケースである.

3. 2. 計算領域

計算領域は、風洞実験の状況を想定し、タイヤ前後・上下・左 右の空間には,自動車周りの物性値の分布が境界の影響を受けず, 十分に一様になるまで広がるように広めの領域を設定した. 流れ 方向×横方向×高さ方向について、①空中タイヤモデルは

15D×5D×10D, ②地上タイヤモデルは 35D×4D×4D, ③簡易車体 モデルは $9L \times 4H_b \times 4H_b$ の直方体領域とした. 図4に②, ③の計 算領域と座標系を示す.一般に物体と流入口の断面積比(ブロッケ ージ)が4%以下であれば境界の影響を無視できる解を得られると されているので、本計算においてもブロッケージが 4%以下とな るよう留意した.また、本計算では入口境界として一様流を与え ているので、タイヤ及び車体の周りで境界層が十分に発達した流 れとなるよう前方に長めの距離を設定した.また、車体後部領域 においても長い後流領域が生成されると予想し、出口境界におい て影響が残らないよう十分な距離を設定した.なお、本研究にお いては、流れが中心面に対して対称であると仮定し、全てのケー スで横方向に半分の領域のみを計算対象とした.

3. 3. 境界条件

全てのモデルに対して流入境界条件には、主流流速 20m/s の一 様流を与えた.なお、流入気流は乱流であるとし、主流の1%の 乱れを与え、乱流レイノルズ数 Rt=500 として流入部の k, εを設 定した. 流出境界は自由流出, 中心断面は対称境界とし, 上面と 側面には自由流れの条件を適用した. 下面は滑りなし壁として扱 うが、地面と干渉があり、回転を考慮するケースでは、20 m/s の ムービングウォールとし、タイヤ表面には半径と角速度から算出 した速度を与えることで回転を表した.

4. 結果及び考察

4. 1. 空中タイヤモデル

本モデルは、タイヤ周りの流れ場を理解するための基礎計算と 位置づけられる. 地面のない空中にタイヤを配置した場合を考え ることで、タイヤ周囲の流れの様相を可視化し、理解することを 目的として行われた.

base model, dimple model におけるタイヤ表面と対称面(z=0)の 流線及び圧力分布を図5に、空中タイヤモデルにおける抵抗値の 大部分を占めるz=30についての圧力係数(Cp)分布を図6に示す. Cpは次のように定義した.

$$C_P = \frac{P - P_{\infty}}{1/2 \rho U_{\infty}^2} \tag{1}$$

ここでPは局所圧力, P_{∞} , U_{∞} は流入口における圧力と流速, ρ は 空気の密度である.

base model において回転なしでは流速の速い80,280度付近で、 低圧領域が形成され、リム部とタイヤ後方に上下対称な渦が形成 されることが確認された. リム部の渦は、タイヤ前方からの流れ がサイドウォールを超え、リム部に向かう際に剥離することで生

(a) base stationary

(b) base rotating

of floating wheel model

じ、後方の渦は、トレッド部とサイドウォールで流れが剥離する ことによって生じると考えられる.

一方、回転するタイヤでは、半時計回りの回転により、下面の 速度が大きくなるのに対し、上面の速度は小さくなる. 圧力に関 しては逆に下面が低く、上面が高くなる. このため、タイヤ下面 の負圧が大きくなり、図6からも確認できるように、下部から背

Fig.6 Pressure coefficient C_P distribution of floating wheel model at z = 30 section

Table.1 Comparison of C_D for floating wheel model

domain	model	condition	C_{D}
floating	stationary	base	0.342
	stationary	dimple	0.314
	rotating	base	0.427
	Totating	dimple	0.370

面にかけて圧力が低い状態が続いている.この結果,回転により C_D 値が増加する.また、タイヤの後流が下面から上面に向かって 流れ、タイヤ上面を逆流した後に下流へと流れていく構造になる ため、静止時に存在した二つの渦のうち上側の渦が消失し、一つ の大きな縦渦を形成する.図6から分かるように、回転により60 度から180度での位置で流れが加速するため、圧力が低下する. これは0度から90度では C_D が減少し、90度から180度では C_D が増加することを意味する.これらの寄与は、背面の方が圧倒的 に大きく、タイヤ全体の C_D は増加する.

次に、回転時の base モデルと dimple モデルの比較を行う.図 5(b)及び(c)からわかるように、基本的な渦構造に大きな変化はみ られないが、dimple モデルではタイヤ後流が base モデルに比べて 乱れ、タイヤ背面付近に強い縦渦が形成される.これは、主にサ イドウォール部からの流れが干渉していると考えられる.ディン プルを設置することにより、流体がディンプル表面に巻き込まれ るような流れとなることで、サイドウォール部の剥離を抑制する ような効果が生まれ、側面からの高速な流体が後流に流入したこ とでタイヤ後方の渦が乱れたと考えられる.また、図6からわか るように、背面(90~270度)の圧力分布は base モデルと大差はな いが、前面(0~90 度及び 270~360 度)で大きく低圧化している. 以上より、タイヤ前方の圧力が低下するため、タイヤの前後で圧 力差が小さくなり抗力が減少する.

表1にタイヤ回転の有無及びディンプルの有無を変更した4ケースの C_D値を示す.一般にタイヤの回転により C_D値は減少する ことが知られているが,空中タイヤモデルでは逆に C_D値が増加

(a) base rotating

Fig.7 Streamline and pressure of ground wheel model

した. 一方,後述するように,地上タイヤモデルでは *C_D* 値が減 少することが示されており,回転による抵抗低減効果は回転と地 面の干渉によるものであることが分かる.また,静止状態及び回 転状態共にディンプルを設置することで *C_D* 値が減少した.これ は前述のとおり,ディンプルにより側面の剥離が抑制され,タイ ヤ前側面下部の圧力が低下するためである.以上より,サイドウ ォール部でのディンプル形状の有効性を確認した.

4. 2. 地上タイヤモデル

図7にbase model 及び dimple model の回転時の流線を、図8に タイヤ外周のディンプル付近(z = 30)における圧力係数(C_P)分布を 示す.空中タイヤモデルの場合は、下面側の巻上げが強いのに対 して、地上タイヤモデルでは地面が干渉することで下面後部の速 度が著しく低下し、圧力が大きく増加する.タイヤ後流では、上 面側に形成された縦渦が地面側に向かって流れ、下面側では側面 から背面に流れ込んだ流れが、上面側の縦渦と干渉して複雑な渦 構造を形成する.これらは Xin ら⁽²⁾と同様の傾向であり、本計算

Fig.8 Pressure coefficient C_P distribution of ground wheel model at z = 30 section

Table.2	Comparison	of C_D for	ground wheel	model
---------	------------	--------------	--------------	-------

domain	model	condition	C_{D}
ground	stationary	base	0.542
	stationary	d imp le	0.543
	rotating	base	0.509
		dimple	0.485

によりタイヤ回転の効果を定性的に再現できていることが確認さ れた.

表 2 に地上タイヤモデルにおける各条件の C_D 値を示す.静止時と回転時を比較すると、base model と dimple model のどちらにおいても回転により C_D 値が減少している.前節で述べたように、空中タイヤモデルでは、60 度から 180 度での位置で加速と圧力低下が生じるため、60 度から 90 度では C_D が減少し、90 度から 180 度では C_D が増加する.しかし、地上タイヤモデルでは、図 8 から分かるように、90 度から 180 度は地面により減速するため、圧力が上昇し、空中タイヤモデルで見られた C_D の増加はなくなる.従って、60 度から 90 度までの C_D 減少効果のみが残るため、地上タイヤモデルでは回転により抗力が低下する.

また,base model と dimple model の *C*₀値を比較したところ,ディンプルにより,4.7%の低下が見られた.図7の回転時の流線を見ると,dimple model は base model に比べ,タイヤ側面を通過する流れがディンプルにより乱され、リム部の剥離が抑制されていることが分かる.これにより,タイヤ前側面下部の流れが加速し,圧力が低下する.この傾向は空中タイヤモデルと同じである.以上より,地上タイヤモデルにおいてもディンプルによる抵抗低減効果を得られることが示された.

4.3. 簡易車体モデル

次に,簡易車体モデルを導入し,ホイールハウスを考慮したタ イヤ回転時のケースについて,ディンプルの効果を議論する.図 9に簡易車体を分割した領域とその名称を示し,これらの各部に

第 25 回数値流体力学シンポジウム A05-3

Table.3 Comparison of C_D for simplified body model

			note	time	
		rotating			
		model			
		base		dimple	
domain	part	CD	%	CD	%
car	Tire	0.0573	7.1	0.0391	5.0
	WH	0.1277	15.9	0.1335	17.0
	Front	0.4940	61.3	0.4940	62.8
	Under	0.0005	0.1	0.0006	0.1
	Roof	0.0001	0.0	0.0001	0.0
	Side	0.0003	0.0	0.0003	0.0
	Base	0.1256	15.6	0.1185	15.1
	Total	0.8055	100.0	0.7862	100.0

おける C_D 値の計算結果を表3 に示す. 簡易車体モデルにおいて, base model と dimple model を比較すると, dimple model の C_D 値が 全体で 2.4%減少している. 各部分における C_D 値にはそれほど違 いは見られないが, タイヤ単体(表中の Tire)に関してのみ, 2%以 上の違いが見られる.

この理由を考察するために base model と dimple model の対称面 の速度ベクトルを図 10 に示し,図11 にタイヤ外周のディンプル 付近(z=30)における圧力係数(C_P)分布を示す.base model,dimple model 共に基本構造は同一である.車体とホイールハウスの存在 により,タイヤ下面のみから流れが流入し,タイヤ表面に沿って, 上面と側面に流れる.上面側の流れは、ホイールハウスとの干渉 により,複雑な渦構造を形成し、タイヤ前方で大規模な剥離領域 が形成される.270 度付近では特に強い逆流がタイヤ背面に衝突 しており,背面の圧力を増加させている.この流れは最終的にホ イールハウスとタイヤ表面の間の流路を通って、タイヤ側面から の流れと合流し、下面側から流出する.これらに関しては base model と dimple model の両者において同一の傾向が見られる.

しかしながら、タイヤ表面圧力分布及びタイヤ後流の構造が大 きく異なる.まず、タイヤ後流について述べる. base モデルは 回転による側面からの流れの巻上げが弱いため、ホイールハウス からタイヤ背面に向かう流れが強い.一方で、ディンプルを設置 した場合、回転による巻上げが強くなるため、ホイールハウスを 通って流れてきた流れを回転方向に押し上げ、ホイールハウスか らタイヤ背面に向かう流れが弱くなる.これはディンプルによる 抵抗低減効果を弱めてしまう.タイヤ表面の圧力分布については、 図11 から分かるようにリム部で剥離が起きないため、側面の流れ が加速し、圧力が低下している.これは、空中タイヤモデル、地

(a) base rotating

(b) dimple rotating

Fig.10 Streamline and pressure of simplified body model

 $[2 \times 10^{-3}]$

第 25 回数値流体力学シンポジウム A05-3

上タイヤモデルと同様の傾向であり、ディンプルによる抵抗低減 効果が機能している.ホイールハウスとの干渉により、ディンプ ルの効果は弱くなるが、地上タイヤモデルの 50%程度の効果が得 られている.このように、タイヤを取り巻く流れ場の環境は、ホ イールハウスの形状にも大きく影響されると考えられる.

本計算により,ホイールハウスの有無が*C*_D値に影響を及ぼし, 性能が変化することが明らかとなった.このことから,自動車の 抵抗低減には,タイヤとホイールハウスの干渉を考慮した設計が 必要であると考えられる.

5. 結論

サイドウォール部にディンプルを設置することによる抵抗低減 効果について検討するため、空中タイヤモデル・地上タイヤモデ ル・簡易車体モデルの3通りのモデルに対して、タイヤ回転の有 無・ディンプルの有無を変更した合計12ケースの三次元数値シミ ュレーションを行った.

本計算より以下の知見を得た.

- 空中タイヤモデルでは、タイヤ回転による重要な効果は下部の流れの加速と上部の減速である.これは、タイヤ後方の渦を消失させる反面、加速による低圧領域を広げることにより、後方の流れ場に対して大きな影響を与え、抵抗を増加させる.
- 地上タイヤモデルでは、空中タイヤモデルの場合とは逆に、 回転により抗力が減少する.これは、地面との干渉により、 タイヤ回転による背面の加速が抑えられ、背面の圧力が増加 することに起因する.
- 3. ディンプルはタイヤ側面の流れを乱すことにより、リム部の 剥離を抑制する. これによりタイヤ前側面の流れは加速し、 圧力が低下するため、Co値を減少させる. この効果はタイヤ の回転・地面・ホイールハウスの有無に関わらず得られる.

4. 簡易車体モデルでは、ホイールハウスを考慮することでタイ ヤ上部の流れが大きく変化し、複雑な渦構造が形成される. ディンプルはホイールハウスからタイヤ背面に衝突する流れ を弱めるため、地上タイヤモデルよりもディンプルによる抵 抗低減効果は低いが、車体全体の C_D値を減少させる.地上 タイヤモデルではサイドウォール部にディンプルを加えたこ とで C_D値が 5%近く減少したが、簡易車体モデルでは、ホイ ールハウスを考慮したことで C_D値の減少は半減した.従っ て、タイヤを取り巻く流れはタイヤハウスの有無に大きく影 響されることを確認した.タイヤハウス内の形状を工夫する ことで C_D値低減に繋がる可能性がある.

今後の課題として、本計算の健全性を評価するため、数値解析 による結果と実験値の比較検証を行う必要がある.加えて、簡易 車体のようなホイールハウスとタイヤ単体の C_D 値低減を考える だけでなく、自動車モデルと合わせた C_D 値低減の実現を図る必 要がある.

参考文献

- Fackrell, J. E. and Harvey, J. K., "The aerodynamics of an isolated road wheel," Proceedings of the Second AIAA Symposium of Aerodynamics of Sports and Competition Automobiles, (1975), pp. 119-125.
- (2) Regert, T. and Lajos, T., "Description of flow field in the wheelhouse of cars," International Journal of Heat and Fluid Flow, 28, (2007), pp. 616-629.
- (3) McManus, J. and Zhang, X., "A computational study of the flow around an isolated wheel in contact with the ground," Journal of Fluids Engineering, 128, (2006), pp. 520-530.