
The 28th Computational Fluid Dynamics Symposium
C08-1

Copyright © 2014 by JSFM 1

Development of an Effective Implicit Solver for General-Purpose

Unstructured CFD Software

o Yoshitaka Nakashima, Software Cradle Co., Ltd, Umeda Kita-ku, Osaka, E-mail: nakashima@cradle.co.jp

Norihiko Watanabe, Software Cradle Co., Ltd, Umeda Kita-ku, Osaka, E-mail: watanabe@cradle.co.jp

Hiroaki Nishikawa, National Institute of Aerospace, Hampton, VA, USA, E-mail: hiro@nianet.org

In this paper, we report the development of an effective implicit finite-volume solver for general-purpose turbulent

flow computations on unstructured hybrid mesh system. For the inviscid and viscous fluxes, we employ the

Rotated-Roe-HLL and alpha-damping fluxes, respectively. The implicit solver is constructed by a defect correction

method, where the residual Jacobian is constructed based on a low-order compact scheme. It enables efficient

time-dependent computations by an unconditionally-stable implicit time-integration scheme. Numerical results show

that a significant speed-up is achieved over an explicit pseudo-time stepping scheme and the exact first-order inviscid

Jacobian gives superior iterative convergence over a simplified inviscid Jacobian for both steady-state and transient

analyses.

1. Introduction

This paper reports further improvements made to the density-based

solver recently added to our general-purpose unstructured-mesh CFD

software, SC/Tetra. The density-based solver is constructed based on the

second-order node-centered edge-based discretization with recently

developed inviscid and viscous fluxes: Rotated-Roe-HLL

(Rotated-RHLL) flux,(1) which is found robust for shock instabilities

without compromising the accuracy, and the alpha-damping viscous

flux,(2) which has been shown to be one of the most robust and accurate

schemes among various viscous schemes tested for unstructured grids.(3)

As reported previously, the density-based solver enables robust and

accurate inviscid shock wave and viscous turbulent computations.(4)

However, the explicit time-integration scheme employed in the solver,

although it can still be used for some practical turbulent computations, is

not efficient enough as a general-purpose solver, especially for

steady-state analyses and for problems requiring a robust and efficient

implicit time-integration scheme. Since the implicit time stepping scheme

is built upon a steady-state (nonlinear) solver, which is used to solve the

implicit residual equations over each physical-time step, a major

enhancement is made in both aspects by the implementation of an

implicit steady solver.

2. Discretization

The discretization is performed by the second-order node-centered

edge-based method, where the solution values are stored at nodes, the

gradients are computed by a linear least-squares (LSQ) method, and the

flux balance is approximated by the edge-based quadrature formula with

the numerical flux evaluated at the edge-midpoint. For the inviscid and

viscous fluxes, we employ the Rotated-RHLL and alpha-damping fluxes,

respectively. These numerical fluxes are evaluated by the left and right

states linearly extrapolated to the edge-midpoint from the two end nodes

of the edge to achieve second-order accuracy. See the previous paper(4) for

more details.

The discretization defines the residual at each node, yielding a global

system of nonlinear residual equations:

𝑅(𝑈) = 0,

where 𝑈 is the global solution vector and 𝑅 is the global residual

vector. It needs to be solved to obtain a steady-state solution or to advance

the numerical solution to the next physical-time step in unsteady

computations by an implicit time integration scheme. In either case,

therefore, a robust and efficient nonlinear solver is required.

3. Implicit Defect-Correction Solver

3.1 Basic Construction

One of the most powerful nonlinear solvers is Newton’s method,

𝑈𝑘+1 = 𝑈𝑘 +△ 𝑈,

𝜕𝑅(𝑈𝑘)

𝜕𝑈𝑘 △ 𝑈 = −𝑅(𝑈𝑘),

where 𝑘 is the iteration counter and △ 𝑈 is the correction. In principle,

it is capable of solving the residual equations to ‘machine zero’ within 10

iterations (quadratic convergence) for any size of the grid. For the

second-order edge-based discretization, however, it is not a practical

option because it requires a large amount of memory for storing the

Jacobian matrix due to the non-compact stencil. An approximate but

practical nonlinear solver can be constructed by a defect-correction (DC)

approach. Namely, we replace the impractical exact Jacobian by an

approximate Jacobian based on a low-order compact edge-based scheme,

𝜕𝑅′(𝑈𝑘)

𝜕𝑈𝑘 △ 𝑈 = −𝑅(𝑈𝑘),

where 𝑅′ is the residual of a low-order scheme. Consequently, the

quadratic convergence is lost, but it still provides a far superior

convergence rate over a naive explicit solver. To construct the

approximate Jacobian, we ignore all the LSQ gradients to define a

compact first-order inviscid scheme and a compact (inconsistent) viscous

scheme, and then exactly differentiate the resulting low-order residual.

For the Rotated-RHLL flux, which is a combination of the Roe and HLL

fluxes, the Jacobian matrix is constructed by exactly differentiating the

Roe flux and the HLL flux. As a simpler but practical option, we also

consider the exact Jacobian of the Rusanov flux, which is a very

dissipative flux based on a scalar dissipation term.(1) For the viscous flux,

the Jacobian is constructed by exactly differentiating the alpha-damping

flux. Since all the LSQ gradients are ignored, we construct the viscous

Jacobian by differentiating only the damping term of the alpha-damping

flux. The damping term by itself does not consistently approximate the

viscous flux, and therefore it is an inconsistent scheme (but often used in

unstructured solvers for the sake of robustness). Here, we employ the

inconsistent scheme only for the Jacobian construction; we have the

alpha-damping flux with all the LSQ gradients in the residual (i.e., the

The 28th Computational Fluid Dynamics Symposium
C08-1

Copyright © 2014 by JSFM 2

right hand side) to guarantee the consistency and accuracy. Note that the

damping term is critical to the construction of an implicit solver; the

differentiation of the low-order viscous flux would yield nothing without

the damping term.

The flux Jacobians have been derived analytically and hand-coded. It is

possible to employ a numerical differentiation technique such as the

automatic differentiation. However, the hand-coded Jacobians are

computationally much cheaper and therefore suitable for developing an

efficient solver. As well known, the construction of Newton’s method is

possible by a Jacobian-free Newton-Krylov method. But it can be a

practical method only if an effective preconditioner is available. The

implicit DC solver described here is expected to serve in future as an

effective preconditioner for a practical Jacobian-free Newton-Krylov

solver.(5)

3.2 Linear Relaxation

The resulting linear system is not fully solved but relaxed to reduce the

linear residual by two orders of magnitude. Currently, a sequential block

Gauss-Seidel (GS) relaxation scheme is applied within each partition.

Further improvements will be made in future by implementing a

multi-color GS relaxation, which is expected to yield

partition-independent convergence in a parallel environment. Although it

is not used in this study, it is possible and often helpful to introduce an

under-relaxation parameter in the linear relaxation.

3.3 Adaptive Strategies

The implicit DC solver is an iterative nonlinear solver, and not a

pseudo-time stepping scheme. However, it is often useful to incorporate

pseudo-time derivative terms based on a local pseudo-time step, which is

added in the diagonals of the Jacobian matrix, to improve the diagonal

dominance:

(
𝑉

△ 𝜏
+

𝜕𝑅′(𝑈𝑘)

𝜕𝑈𝑘) △ 𝑈 = −𝑅(𝑈𝑘),

where 𝑉 Δ𝜏⁄ is a diagonal matrix of the ratio of the local control volume

to the local pseudo-time step. It is expected to stabilize the linear

relaxation and the nonlinear iteration. The CFL number associated with

the pseudo-time step is ramped from an initial value, typically 1, and to

the maximum value of 105 with an increment of 20% in each iteration. To

deal with unexpected instability during the iteration, an under-relaxation

parameter is introduced; a maximum change on the order of 20% is

allowed for the density and total energy in the each iteration.(5) The

Rotated-RHLL flux involves a parameter that determines the weights

assigned to the Roe and HLL fluxes. The parameter is updated at every

iteration during the first 50 iterations, and then updated at every 20

iterations thereafter. The Rotated-RHLL Jacobian is truly exact when the

parameter is frozen.

3.4 Convergence Criteria

Convergence is checked by the difference of two successive solutions

(the iterative solution difference) of the primitive variable, such as density,

pressure, and velocities, being less than a specified tolerance. In this study,

the iterative solution difference is normalized by the difference between

maximum and minimum values of the variable in the computational

region, and the tolerance is set to be 10-6. For the problems considered in

this paper, the above stopping criterion was found practical. However, to

avoid possible false terminations by slow or stalled convergence, the

residual should be monitored in general, instead or in addition to the

iterative solution difference.

4. Time Integration Scheme

Time integration is performed by the second-order backward difference

formula (BDF2):

𝜕𝑈

𝜕𝑡
≈

3𝑈𝑛+1 − 4𝑈𝑛 + 𝑈𝑛−1

2Δ𝑡
,

where Δ𝑡 is the physical-time step; the discretized time derivative is

incorporated into the residual 𝑅 as a source term. This scheme is

unconditionally-stable, and therefore the physical time step can be

determined solely by physical requirements, not by numerical stability

requirements. This is a very attractive property for general-purpose

unstructured CFD software. In fact, BDF2 has been very widely

employed in many practical CFD codes. The implicit time integration

requires the solution of a nonlinear system of equations, 𝑅(𝑈𝑛+1) = 0,

at every physical-time step. The nonlinear problem is equivalent to a

pseudo-steady problem, and can be solved by marching in the

pseudo-time with an explicit time-stepping scheme. The resulting

algorithm is often called the dual-time stepping method. But the explicit

pseudo-time stepping towards the pseudo-steady state can be very

expensive since it typically requires a large number of time steps and thus

a large number of nonlinear residual evaluations. To solve the nonlinear

system efficiently, we employ the implicit DC solver as described in the

previous section. For the transient analysis considered in this study, the

CFL number associated with the pseudo-time step is fixed to be 105. Note

that the algorithm is not the dual-time stepping method since the implicit

DC solver is not a pseudo-time stepping scheme.

5. Results

5.1 RAE2822 Transonic Airfoil

To demonstrate the effectiveness of the developed implicit solver, we

(a) Pressure (b) Mach number

Fig. 1 Pressure and Mach number distributions

around RAE2822 airfoil

Fig. 2 Pressure coefficients on the RAE2822 airfoil

The 28th Computational Fluid Dynamics Symposium
C08-1

Copyright © 2014 by JSFM 3

consider a transonic turbulent flow over the RAE2822 airfoil. The Mach

number is 0.729, the Reynolds number is 6.5 million, and the angle of

attack is 2.31 degrees. The turbulence model is SST k-omega.(6) The grid

is fully unstructured with 93,297 prismatic and hexahedral elements and

100,626 nodes, where 50,313 nodes exist on the two-dimensional plane

and hexahedral elements are used only around the airfoil. We employ the

Rotated-RHLL flux in the residual, and apply the three types of

explicit/implicit solvers: the explicit pseudo-time stepping method, the

implicit DC solver with either the Rusanov or Rotated-RHLL Jacobians.

For the explicit method, the CFL number of pseudo-time step is fixed to

be 0.8. The same steady state is expected for these three methods.

As an example, the pressure and Mach number distributions around the

airfoil obtained by the implicit DC solver with Rotated-RHLL Jacobian

are shown in Fig. 1. Figure 2 shows the pressure coefficients on the airfoil

in comparison with the experimental result.(7) As expected, the pressure

coefficients are almost the same between the three methods. Furthermore,

they are in good agreement with the experimental result. Table 1 shows

the calculation time and the convergence cycle in each method. Note that

one cycle corresponds to one pseudo-time step or one DC iteration. Here,

the computations were performed with 24 CPU cores. Figure 3 shows

histories of the iterative pressure difference. Note that, for this problem,

the steady state is taken to be reached at the iterative pressure difference

being less than 10-6 for convenience. As shown in the table and figure, the

implicit solver achieves a rapid convergence and an order of magnitude

speed-up in the calculation time over the explicit pseudo-time stepping

scheme. Furthermore, the Rotated-RHLL Jacobian (the exact first-order

inviscid Jacobian) gives superior iterative convergence and approximately

2.5 times faster in the calculation time than the Rusanov Jacobian.

5.2 Flow around Cylinder

We consider a time-dependent laminar flow over a cylinder to examine

the efficiency of the implicit time stepping scheme built upon the implicit

DC solver. The Mach number is 0.2 and the Reynolds number is 150. The

grid is fully unstructured with 50,875 prismatic and hexahedral elements

and 51,566 nodes, where 25,783 nodes exist on the two-dimensional

plane. For this problem, we compare the performance of a two-stage

second-order explicit Runge-Kutta time stepping method, and the BDF2

scheme with the explicit pseudo-time stepping method and the implicit

DC method. Note that, in this problem, we employ the Roe flux in the

residual. As for the Jacobian matrix in the implicit DC solver, we apply

the Roe and Rusanov Jacobians. At every physical time step, the implicit

residual equations are solved until the iterative differences of the

Table 1 Calculation time by 24 CPU cores parallel

computation for RAE2822 airfoil

Solver Total cycles
Calculation time [sec]

Total 1 cycle

Explicit pseudo-time

stepping
29,649 3,386 0.11

Implicit DC with

Rusanov Jacobian
442 302 0.68

Implicit DC with

Rotated-RHLL Jacobian
109 125 1.15

Fig. 4 Vorticity distribution around a cylinder

Fig. 3 Histories of the iterative pressure difference

for RAE2822 airfoil

 Fig. 5 Time histories of lift coefficient acting on the cylinder,

where t1 is the time of a peak value

Table 2 Calculation time by 24 CPU cores parallel computation for flow around a cylinder

Solver
Calculation

cycles

Physical-time

step
CFL

Inner iterative

loops at every

time step

Calculation time [sec]

Physical-time stepping Nonlinear Solver Total 1 cycle

Explicit Runge-Kutta None 418,569 0.0019 0.8 None 11,432 0.03

Second-order backward

difference formula

(BDF2)

Explicit pseudo-time stepping

2,000 0.4000 167.4

127.1 6,541 3.27

Implicit DC with Rusanov Jacobian 9.4 2,351 1.18

Implicit DC with Roe Jacobian 6.7 1,556 0.78

The 28th Computational Fluid Dynamics Symposium
C08-1

Copyright © 2014 by JSFM 4

conservative variables drop below10-6.

As an example, the vorticity distribution around the cylinder obtained

by the BDF2 scheme using the implicit DC solver with the Roe Jacobian

is shown in Fig. 4. Figure 5 shows the time histories of lift coefficient

acting on the cylinder. The lift coefficients are almost the same among the

four methods. Table 2 shows the calculation time and the number of inner

iterative loops at every physical-time step in each method. Since all the

methods solve the same physical-time length, the explicit Runge-Kutta

method requires a huge number of cycles (physical-time steps) because of

a tiny time step due to the CFL condition; therefore the computational

cost is very high. On the other hand, a large time step is available in the

BDF2 scheme. The number of inner iterative loops for the DC solver is

significantly smaller than that of the explicit pseudo-time stepping.

Furthermore, the Roe Jacobian, which is the exact first-order inviscid

Jacobian, gives superior inner-iterative convergence over the Rusanov

Jacobian; consequently, it achieves the shortest calculation time among

the methods considered, which is nearly one order of magnitude faster

than the explicit time stepping scheme.

5.3 NASA CRM

We consider a three-dimensional turbulent flow over NASA’s

Common Research Model (CRM)(8) to investigate the parallel efficiency

for realistic computations. The Mach number is 0.85, the Reynolds

number is 5 million, and the angle of attack is 2 degrees. The turbulence

model is Spalart-Allmaras.(9) The computational domain is half of the full

three-dimensional domain. The grid is fully unstructured with 8,266,407

tetrahedral and prismatic elements and 1,737,014 nodes. We employ the

Rotated-RHLL flux and its Jacobian to the residual and implicit DC

solver, respectively. As shown in Fig. 6, the steady state can be obtained

by the implicit approach even for the realistic three-dimensional geometry.

Figure 7 shows a good parallel efficiency for this problem.

6. Conclusions

An efficient implicit solver has been developed for the density-based

compressible-flow solver for unstructured-mesh CFD software. The

method is a DC method based on the exact first-order Jacobian for the

inviscid terms and the exact Jacobian for the damping term of the

alpha-damping scheme for the viscous terms. Significant speed-up has

been demonstrated over an explicit pseudo-steady solver for simple but

realistic steady turbulent flow and fundamental transient laminar flow

cases on unstructured grids.

Bibliography

(1) Nishikawa, H. and Kitamura, K., “Very simple, carbuncle-free,

boundary-layer-resolving, rotated-hybrid Riemann solvers,” J.

Comp. Phys., 227: 2560-2581 (2008).

(2) Nishikawa, H., “Two ways to extend diffusion schemes to

Navier-Stokes schemes: gradient formula or upwind flux,” AIAA

Paper, 2011-3044 (2011).

(3) Jalali, A., Sharbatdar, M., and Ollivier-Gooch, C., “Accuracy

analysis of unstructured finite volume discretization schemes for

diffusive fluxes,” Comput. Fluids, 101: 220-232 (2014).

(4) Nakashima, Y., Yoshida, H., Watanabe, N., and Nishikawa, H.

“Development of a robust and accurate general-purpose

compressible flow solver for unstructured meshes,” The 26th

Computational Fluid Dynamics Symposium, Tokyo, Japan (2012).

(5) Nishikawa, H., Diskin B., Thomas, J. L., and Hammond, D. P.,

“Recent advances in agglomerated multigrid,” AIAA Paper,

2013-863 (2013).

(6) Menter, F. R., “Zonal two equation k-ω turbulence models for

aerodynamic flows,” AIAA Paper, 93-2906 (1993).

(7) Cook, P. H., McDonald, M. A., and Firmin, M. C. P., “Aerofoil

RAE2822 - pressure distributions, and boundary layer and wake

measurements,” AGARD Report AR 138 (1979).

(8) http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/

(9) Spalart, P. R. and Allmaras, S. R., “A one-equation turbulence

model for aerodynamic flows,” AIAA Paper, 92-0439 (1992).

Fig. 6 Body surface pressure and iso-surfaces of Mach 1

for NASA CRM

Fig. 7 Measurement of parallel efficiency for NASA CRM

