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In this paper, we report the development of an effective implicit finite-volume solver for general-purpose turbulent 

flow computations on unstructured hybrid mesh system. For the inviscid and viscous fluxes, we employ the 

Rotated-Roe-HLL and alpha-damping fluxes, respectively. The implicit solver is constructed by a defect correction 

method, where the residual Jacobian is constructed based on a low-order compact scheme. It enables efficient 

time-dependent computations by an unconditionally-stable implicit time-integration scheme. Numerical results show 

that a significant speed-up is achieved over an explicit pseudo-time stepping scheme and the exact first-order inviscid 

Jacobian gives superior iterative convergence over a simplified inviscid Jacobian for both steady-state and transient 

analyses.  

  

 

1. Introduction 

This paper reports further improvements made to the density-based 

solver recently added to our general-purpose unstructured-mesh CFD 

software, SC/Tetra. The density-based solver is constructed based on the 

second-order node-centered edge-based discretization with recently 

developed inviscid and viscous fluxes: Rotated-Roe-HLL 

(Rotated-RHLL) flux,(1) which is found robust for shock instabilities 

without compromising the accuracy, and the alpha-damping viscous 

flux,(2) which has been shown to be one of the most robust and accurate 

schemes among various viscous schemes tested for unstructured grids.(3) 

As reported previously, the density-based solver enables robust and 

accurate inviscid shock wave and viscous turbulent computations.(4) 

However, the explicit time-integration scheme employed in the solver, 

although it can still be used for some practical turbulent computations, is 

not efficient enough as a general-purpose solver, especially for 

steady-state analyses and for problems requiring a robust and efficient 

implicit time-integration scheme. Since the implicit time stepping scheme 

is built upon a steady-state (nonlinear) solver, which is used to solve the 

implicit residual equations over each physical-time step, a major 

enhancement is made in both aspects by the implementation of an 

implicit steady solver.  

 

2. Discretization 

The discretization is performed by the second-order node-centered 

edge-based method, where the solution values are stored at nodes, the 

gradients are computed by a linear least-squares (LSQ) method, and the 

flux balance is approximated by the edge-based quadrature formula with 

the numerical flux evaluated at the edge-midpoint. For the inviscid and 

viscous fluxes, we employ the Rotated-RHLL and alpha-damping fluxes, 

respectively. These numerical fluxes are evaluated by the left and right 

states linearly extrapolated to the edge-midpoint from the two end nodes 

of the edge to achieve second-order accuracy. See the previous paper(4) for 

more details.  

The discretization defines the residual at each node, yielding a global 

system of nonlinear residual equations: 

𝑅(𝑈) = 0, 

where 𝑈 is the global solution vector and 𝑅 is the global residual 

vector. It needs to be solved to obtain a steady-state solution or to advance 

the numerical solution to the next physical-time step in unsteady 

computations by an implicit time integration scheme. In either case, 

therefore, a robust and efficient nonlinear solver is required. 

 

3. Implicit Defect-Correction Solver 

3.1 Basic Construction 

One of the most powerful nonlinear solvers is Newton’s method, 

𝑈𝑘+1 = 𝑈𝑘 +△ 𝑈, 

𝜕𝑅(𝑈𝑘)

𝜕𝑈𝑘  △ 𝑈 = −𝑅(𝑈𝑘), 

where 𝑘 is the iteration counter and △ 𝑈 is the correction. In principle, 

it is capable of solving the residual equations to ‘machine zero’ within 10 

iterations (quadratic convergence) for any size of the grid. For the 

second-order edge-based discretization, however, it is not a practical 

option because it requires a large amount of memory for storing the 

Jacobian matrix due to the non-compact stencil. An approximate but 

practical nonlinear solver can be constructed by a defect-correction (DC) 

approach. Namely, we replace the impractical exact Jacobian by an 

approximate Jacobian based on a low-order compact edge-based scheme,  

𝜕𝑅′(𝑈𝑘)

𝜕𝑈𝑘  △ 𝑈 = −𝑅(𝑈𝑘), 

where 𝑅′ is the residual of a low-order scheme. Consequently, the 

quadratic convergence is lost, but it still provides a far superior 

convergence rate over a naive explicit solver. To construct the 

approximate Jacobian, we ignore all the LSQ gradients to define a 

compact first-order inviscid scheme and a compact (inconsistent) viscous 

scheme, and then exactly differentiate the resulting low-order residual. 

For the Rotated-RHLL flux, which is a combination of the Roe and HLL 

fluxes, the Jacobian matrix is constructed by exactly differentiating the 

Roe flux and the HLL flux. As a simpler but practical option, we also 

consider the exact Jacobian of the Rusanov flux, which is a very 

dissipative flux based on a scalar dissipation term.(1) For the viscous flux, 

the Jacobian is constructed by exactly differentiating the alpha-damping 

flux. Since all the LSQ gradients are ignored, we construct the viscous 

Jacobian by differentiating only the damping term of the alpha-damping 

flux. The damping term by itself does not consistently approximate the 

viscous flux, and therefore it is an inconsistent scheme (but often used in 

unstructured solvers for the sake of robustness). Here, we employ the 

inconsistent scheme only for the Jacobian construction; we have the 

alpha-damping flux with all the LSQ gradients in the residual (i.e., the 
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right hand side) to guarantee the consistency and accuracy. Note that the 

damping term is critical to the construction of an implicit solver; the 

differentiation of the low-order viscous flux would yield nothing without 

the damping term.  

The flux Jacobians have been derived analytically and hand-coded. It is 

possible to employ a numerical differentiation technique such as the 

automatic differentiation. However, the hand-coded Jacobians are 

computationally much cheaper and therefore suitable for developing an 

efficient solver. As well known, the construction of Newton’s method is 

possible by a Jacobian-free Newton-Krylov method. But it can be a 

practical method only if an effective preconditioner is available. The 

implicit DC solver described here is expected to serve in future as an 

effective preconditioner for a practical Jacobian-free Newton-Krylov 

solver.(5)  

 

3.2 Linear Relaxation 

The resulting linear system is not fully solved but relaxed to reduce the 

linear residual by two orders of magnitude. Currently, a sequential block 

Gauss-Seidel (GS) relaxation scheme is applied within each partition. 

Further improvements will be made in future by implementing a 

multi-color GS relaxation, which is expected to yield 

partition-independent convergence in a parallel environment. Although it 

is not used in this study, it is possible and often helpful to introduce an 

under-relaxation parameter in the linear relaxation. 

 

3.3 Adaptive Strategies 

The implicit DC solver is an iterative nonlinear solver, and not a 

pseudo-time stepping scheme. However, it is often useful to incorporate 

pseudo-time derivative terms based on a local pseudo-time step, which is 

added in the diagonals of the Jacobian matrix, to improve the diagonal 

dominance:  

(
𝑉

△ 𝜏
+

𝜕𝑅′(𝑈𝑘)

𝜕𝑈𝑘 ) △ 𝑈 = −𝑅(𝑈𝑘), 

where 𝑉 Δ𝜏⁄  is a diagonal matrix of the ratio of the local control volume 

to the local pseudo-time step. It is expected to stabilize the linear 

relaxation and the nonlinear iteration. The CFL number associated with 

the pseudo-time step is ramped from an initial value, typically 1, and to 

the maximum value of 105 with an increment of 20% in each iteration. To 

deal with unexpected instability during the iteration, an under-relaxation 

parameter is introduced; a maximum change on the order of 20% is 

allowed for the density and total energy in the each iteration.(5) The 

Rotated-RHLL flux involves a parameter that determines the weights 

assigned to the Roe and HLL fluxes. The parameter is updated at every 

iteration during the first 50 iterations, and then updated at every 20 

iterations thereafter. The Rotated-RHLL Jacobian is truly exact when the 

parameter is frozen.  

 

3.4 Convergence Criteria 

Convergence is checked by the difference of two successive solutions 

(the iterative solution difference) of the primitive variable, such as density, 

pressure, and velocities, being less than a specified tolerance. In this study, 

the iterative solution difference is normalized by the difference between 

maximum and minimum values of the variable in the computational 

region, and the tolerance is set to be 10-6. For the problems considered in 

this paper, the above stopping criterion was found practical. However, to 

avoid possible false terminations by slow or stalled convergence, the 

residual should be monitored in general, instead or in addition to the 

iterative solution difference.  

 

4. Time Integration Scheme  

Time integration is performed by the second-order backward difference 

formula (BDF2): 

𝜕𝑈

𝜕𝑡
≈

3𝑈𝑛+1 − 4𝑈𝑛 + 𝑈𝑛−1

2Δ𝑡
, 

where Δ𝑡 is the physical-time step; the discretized time derivative is 

incorporated into the residual 𝑅  as a source term. This scheme is 

unconditionally-stable, and therefore the physical time step can be 

determined solely by physical requirements, not by numerical stability 

requirements. This is a very attractive property for general-purpose 

unstructured CFD software. In fact, BDF2 has been very widely 

employed in many practical CFD codes. The implicit time integration 

requires the solution of a nonlinear system of equations, 𝑅(𝑈𝑛+1) = 0, 

at every physical-time step. The nonlinear problem is equivalent to a 

pseudo-steady problem, and can be solved by marching in the 

pseudo-time with an explicit time-stepping scheme. The resulting 

algorithm is often called the dual-time stepping method. But the explicit 

pseudo-time stepping towards the pseudo-steady state can be very 

expensive since it typically requires a large number of time steps and thus 

a large number of nonlinear residual evaluations. To solve the nonlinear 

system efficiently, we employ the implicit DC solver as described in the 

previous section. For the transient analysis considered in this study, the 

CFL number associated with the pseudo-time step is fixed to be 105. Note 

that the algorithm is not the dual-time stepping method since the implicit 

DC solver is not a pseudo-time stepping scheme.  

 

5. Results  

5.1 RAE2822 Transonic Airfoil 

To demonstrate the effectiveness of the developed implicit solver, we 

(a) Pressure (b) Mach number 

  
Fig. 1  Pressure and Mach number distributions 

around RAE2822 airfoil 

 

Fig. 2  Pressure coefficients on the RAE2822 airfoil 
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consider a transonic turbulent flow over the RAE2822 airfoil. The Mach 

number is 0.729, the Reynolds number is 6.5 million, and the angle of 

attack is 2.31 degrees. The turbulence model is SST k-omega.(6) The grid 

is fully unstructured with 93,297 prismatic and hexahedral elements and 

100,626 nodes, where 50,313 nodes exist on the two-dimensional plane 

and hexahedral elements are used only around the airfoil. We employ the 

Rotated-RHLL flux in the residual, and apply the three types of 

explicit/implicit solvers: the explicit pseudo-time stepping method, the 

implicit DC solver with either the Rusanov or Rotated-RHLL Jacobians. 

For the explicit method, the CFL number of pseudo-time step is fixed to 

be 0.8. The same steady state is expected for these three methods.  

As an example, the pressure and Mach number distributions around the 

airfoil obtained by the implicit DC solver with Rotated-RHLL Jacobian 

are shown in Fig. 1. Figure 2 shows the pressure coefficients on the airfoil 

in comparison with the experimental result.(7) As expected, the pressure 

coefficients are almost the same between the three methods. Furthermore, 

they are in good agreement with the experimental result. Table 1 shows 

the calculation time and the convergence cycle in each method. Note that 

one cycle corresponds to one pseudo-time step or one DC iteration. Here, 

the computations were performed with 24 CPU cores. Figure 3 shows 

histories of the iterative pressure difference. Note that, for this problem, 

the steady state is taken to be reached at the iterative pressure difference 

being less than 10-6 for convenience. As shown in the table and figure, the 

implicit solver achieves a rapid convergence and an order of magnitude 

speed-up in the calculation time over the explicit pseudo-time stepping 

scheme. Furthermore, the Rotated-RHLL Jacobian (the exact first-order 

inviscid Jacobian) gives superior iterative convergence and approximately 

2.5 times faster in the calculation time than the Rusanov Jacobian.  

 

5.2 Flow around Cylinder 

We consider a time-dependent laminar flow over a cylinder to examine 

the efficiency of the implicit time stepping scheme built upon the implicit 

DC solver. The Mach number is 0.2 and the Reynolds number is 150. The 

grid is fully unstructured with 50,875 prismatic and hexahedral elements 

and 51,566 nodes, where 25,783 nodes exist on the two-dimensional 

plane. For this problem, we compare the performance of a two-stage 

second-order explicit Runge-Kutta time stepping method, and the BDF2 

scheme with the explicit pseudo-time stepping method and the implicit 

DC method. Note that, in this problem, we employ the Roe flux in the 

residual. As for the Jacobian matrix in the implicit DC solver, we apply 

the Roe and Rusanov Jacobians. At every physical time step, the implicit 

residual equations are solved until the iterative differences of the 

Table 1  Calculation time by 24 CPU cores parallel 

computation for RAE2822 airfoil 

 

 

Solver Total cycles 
Calculation time [sec] 

Total 1 cycle 

Explicit pseudo-time 

stepping 
29,649 3,386 0.11 

Implicit DC with  

Rusanov Jacobian 
442 302 0.68 

Implicit DC with 

Rotated-RHLL Jacobian 
109 125 1.15 

 

Fig. 4  Vorticity distribution around a cylinder 

 

 

 

Fig. 3  Histories of the iterative pressure difference  

for RAE2822 airfoil 

 Fig. 5  Time histories of lift coefficient acting on the cylinder, 

where t1 is the time of a peak value 

Table 2  Calculation time by 24 CPU cores parallel computation for flow around a cylinder 

Solver 
Calculation 

cycles 

Physical-time 

step 
CFL 

Inner iterative 

loops at every 

time step 

Calculation time [sec] 

Physical-time stepping Nonlinear Solver Total 1 cycle 

Explicit Runge-Kutta None 418,569 0.0019 0.8 None 11,432 0.03 

Second-order backward 

difference formula 

(BDF2) 

Explicit pseudo-time stepping 

2,000 0.4000 167.4 

127.1 6,541 3.27 

Implicit DC with Rusanov Jacobian 9.4 2,351 1.18 

Implicit DC with Roe Jacobian 6.7 1,556 0.78 
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conservative variables drop below10-6. 

As an example, the vorticity distribution around the cylinder obtained 

by the BDF2 scheme using the implicit DC solver with the Roe Jacobian 

is shown in Fig. 4. Figure 5 shows the time histories of lift coefficient 

acting on the cylinder. The lift coefficients are almost the same among the 

four methods. Table 2 shows the calculation time and the number of inner 

iterative loops at every physical-time step in each method. Since all the 

methods solve the same physical-time length, the explicit Runge-Kutta 

method requires a huge number of cycles (physical-time steps) because of 

a tiny time step due to the CFL condition; therefore the computational 

cost is very high. On the other hand, a large time step is available in the 

BDF2 scheme. The number of inner iterative loops for the DC solver is 

significantly smaller than that of the explicit pseudo-time stepping. 

Furthermore, the Roe Jacobian, which is the exact first-order inviscid 

Jacobian, gives superior inner-iterative convergence over the Rusanov 

Jacobian; consequently, it achieves the shortest calculation time among 

the methods considered, which is nearly one order of magnitude faster 

than the explicit time stepping scheme.  

 

5.3 NASA CRM  

We consider a three-dimensional turbulent flow over NASA’s 

Common Research Model (CRM)(8) to investigate the parallel efficiency 

for realistic computations. The Mach number is 0.85, the Reynolds 

number is 5 million, and the angle of attack is 2 degrees. The turbulence 

model is Spalart-Allmaras.(9) The computational domain is half of the full 

three-dimensional domain. The grid is fully unstructured with 8,266,407 

tetrahedral and prismatic elements and 1,737,014 nodes. We employ the 

Rotated-RHLL flux and its Jacobian to the residual and implicit DC 

solver, respectively. As shown in Fig. 6, the steady state can be obtained 

by the implicit approach even for the realistic three-dimensional geometry. 

Figure 7 shows a good parallel efficiency for this problem.  

6. Conclusions 

An efficient implicit solver has been developed for the density-based 

compressible-flow solver for unstructured-mesh CFD software. The 

method is a DC method based on the exact first-order Jacobian for the 

inviscid terms and the exact Jacobian for the damping term of the 

alpha-damping scheme for the viscous terms. Significant speed-up has 

been demonstrated over an explicit pseudo-steady solver for simple but 

realistic steady turbulent flow and fundamental transient laminar flow 

cases on unstructured grids.  
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Fig. 6  Body surface pressure and iso-surfaces of Mach 1  

for NASA CRM 

 

 

Fig. 7  Measurement of parallel efficiency for NASA CRM 

 


