超高負荷タービン翼列におけるスキーラ翼端による漏れ流れの低減メカニズム

Reduction Mechanism of Leakage Flow by Squealer Tip

in Ultra-Highly Loaded Turbine Cascade

田澤 紘之,法大院,東京都小金井市梶野町 3-7-2
秋山 浩二,法大院,東京都小金井市梶野町 3-7-2
辻田 星歩,法大,東京都小金井市梶野町 3-7-2
金子 雅直,東電大,埼玉県比企郡鳩山町石坂
Hiroyuki TAZAWA, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo
Koji AKIYAMA, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo
Hoshio TSUJITA, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo
Masanao KANEKO, Tokyo Denki University, Ishizaka, Hatoyama-machi, Hiki-gun, Saitama

The objective of this study is to investigate the reduction mechanism of tip leakage flow by squealer tip in ultrahighly loaded turbine cascade (UHLTC) with the turning angle of 160 degrees. The flow in the UHLTC with the squealer tip was numerically analyzed by using the commercial CFD code. The computed results were examined in detail by comparing with the experimental results obtained by oil flow visualization, and consequently clarified that the separation vortex along the squealer rim and the re-circulating flow in the cavity reduced the leakage flow into and out of the tip clearance region.

1. 緒論

地球温暖化や化石燃料の枯渇に対する懸念から,航空用お よび発電用として用いられるガスタービンの環境負荷低減に 向けた研究が盛んに行われ続けている⁽¹⁾.ガスタービンの空 気力学的性能を向上させる方法の一つとして,その主要構成 要素の一つであるタービン翼の転向角の増加による高負荷化 がある.この高負荷化はタービン翼一枚あたりから得られる 負荷が増加するため,タービン翼枚数および段数の削減を可 能にする.しかし,高負荷化は必然的に翼間圧力勾配を増大 させるため翼間流路内の二次流れを増強させ,翼列の空力性 能を著しく低下させる恐れがある.そのため,二次流れの増 強を抑えつつ高負荷化を実現するためには,二次流れを低減 できる技術の適用が必要不可欠となる.二次流れは主に馬蹄 形渦,流路渦および翼端漏れ流れなどにより構成されており, 各現象に対して低減技術が提案されている.

本研究では、漏れ流れの低減技術として知られているスキ ーラ翼端を適用した転向角 160°を有する超高負荷タービン 翼列(UHLTC)内の流れに対して数値解析を行い、実験結果と の比較を行うことによりスキーラ翼端による漏れ流れの低減 メカニズムについて調査した.

Fig.1 Configuration of UHLTC

2. 供試翼列形状

解析対象である翼列形状を図1に、その主な仕様を表1に 示す.また、スキーラの幾何学的パラメータの定義を図2に 示す. 翼端間隙高さは $TCL(=\delta/H_0 \times 100)=1$ %に設定し、スキー ラ深さはD=0 mm とD=4 mm に設定した(表1).

Table 1 Specification of cascade

Inlet metal angle : α_1 [deg.]	80.0	
Outlet metal angle : α_2 [deg.]	80.0	
Chord length : C [mm]	80.0	
Axial chord length : C_{ax} [mm]	68.5	
Blade pitch : S [mm]	114.28	
Passage Height : H_o [mm]	100	
Blade height : H [mm]	99	
Tip clearance size : δ [mm]	1	
Tip clearance : TCL [%]	1	
Squealer depth : D [mm]	0	4
Squealer rim width : W [mm]	0	4

Fig.2 Definition of tip clearance and squealer tip parameters

3. 解析方法

3.1 数值解析法

本研究では(株)ソフトウェアクレイドルの非構造格子系 汎用 CFD コード SCRYU/Tetra Ver.12 を使用して数値解析を行 った.支配方程式の離散化には有限体積法を,計算アルゴリ ズムには SIMPLEC 法を,対流項の評価には MUSCL 法を,乱 流モデルとして低レイノルズ数型 SST *k-ω* モデルを使用し, 定常非圧縮性流れを仮定して解析を行った.

3.2 解析モデルおよび境界条件

図 3 に本研究で使用した解析モデルを示す. 解析モデルの 入口境界および出口境界位置はそれぞれ Z/Cax= -0.8 と 3.0 に 設定した. ここで, Z/Cax とは翼前縁(LE)を 0.0, 翼後縁(TE)を 1.0 とした軸方向無次元距離である.

入口境界条件として,図4に示す流速分布を軸方向に対して80°をなす方向に与えた.図中のY/H_oはHub壁を0.0, Tip 側 Endwall(EW)を1.0とするスパン方向無次元距離である.出 口境界には連続の条件を満たす自由流出境界条件を適用した.

3.3 評価パラメータ

本研究の数値解析においては,以下のパラメータにより翼 列性能の評価を行った.

全圧損失係数: $C_{pt} = (Pt_{in} - Pt) / (\rho V_{out}^2/2)$	(1)
静圧係数: $C_{ps} = Ps / (\rho V_{out}^2/2)$	(2)

ここで *Pt* は全圧, *Ps* は静圧, *Pt*_{in} は翼列上流 *Z*/*C*_{ax}=-0.8 における断面質量平均全圧, *V*_{out} は翼列下流 *Z*/*C*_{ax}=1.3 における断面質量平均流速である.

Fig.4 Spanwise distribution of inlet velocity

4. 実験方法

4.1 試験装置

図 5 に本研究で用いた試験装置を示す. 試験装置は吸込み 型風洞であり, 翼列軸方向と入口案内板がなす角度 β_i, 同様 に出口案内板角度 β_oは任意の角度に設定可能な構造となって いる.

4.2 実験方法

本研究では、入口案内板の角度 β =80.0°、入口流速を 35.0m/s に設定して実験を行った.出口案内板の角度については、超 高負荷タービン直線翼列風洞を対象にした、設計入射角にお ける数値解析結果⁽²⁾から見積もられた自然流出角 β_o =83.5°に 設定した.なお、翼弦長と翼列下流における流速に基づくレ イノルズ数は約 3.1×10⁵ である.また、油膜を図 5 に示す測定 領域内の翼端面および Tip 側 EW に均一に塗布し、約 30 分間 送風機を運転した後、形成された流れのパターンをデジタル カメラで記録した.さらにキャビティ内の複雑な流れの向き を特定するために、キャビティ底面と Tip 側 EW において油 点法による可視化実験も行った.可視化に用いた油膜は、二 酸化チタン、流動パラフィン、オレイン酸を、1.0:1.2:1.0 で 配合して作成した.また、油点法では配合比を 1.0:2.0:1.0 とした.

5. 結果および考察

5.1 翼列内部流れ

図 6, 図 7 および図 8 に計算結果による Z/Cax=0.5, 0.85, 1.1 における二次流れ速度ベクトルと全圧損失係数分布を,表 2 に計算結果による Z/Cax=1.1 における全圧損失係数の断面質 量平均値として定義される総損失を示す.

翼間流路方向中央 $Z/C_{ax}=0.5$ では両 EW 付近において流路 渦 V_P の存在が確認でき, D=4 mm の方が V_P に起因する損失 が増加している(図 6). これはスキーラ翼端の適用により, Tip 側 EW 上の境界層流体が圧力面側から翼端間隙内へ流入する のが抑制され, さらにそれに伴い翼間流路内の流量が増加し たことにより V_P が発達したためと考えられる.また翼間後半 部 $Z/C_{ax}=0.85$ でも両 EW において V_P が, さらに Tip 側 EW 付 近に漏れ渦 V_L の存在が確認でき, D=4 mm の方が V_L に起因 する高損失領域が低減されている(図 7). この高損失領域の低 減はスキーラ翼端の適用により, 翼間流路内に流出する漏れ 流れが低減されたことを示すものと考えられる. さらに翼列 下流 $Z/C_{ax}=1.1$ では Midspan(MS)付近に V_P が, Tip 側 EW 付近 に V_L の存在が確認できる(図 8). また, 同位置における総損 失が D=4 mm の方が低減されている(表 2). これは V_L の低減 に伴う損失の低下に加えて V_L と Tip 側の V_P との干渉による 損失生成も低減されたためであると考えられる(図 8). このこ とから,スキーラ翼端の適用は超高負荷タービン翼に対して も損失低減に有効であることが分かる.

5. 2 スキーラキャビティ内の流れの挙動

図 9 と図 10 に計算結果による *D*=0 mm と 4 mm の翼端面と Tip 側 EW 上の限界流線をそれぞれ示す.図 11 に *D*=0 mm の 翼端面と Tip 側 EW 上の油膜法による実験結果を,図 12 と図 13 に *D*=4 mm の翼端面と Tip 側 EW 上の油膜法および油点法 による可視化結果をそれぞれ示す.また,図 14 には計算結果 によるスキーラキャビティ底面近傍 *Y*/*H*_o=0.951 と Tip 側 EW 近傍 *Y*/*H*_o=0.999 における静圧係数分布に速度ベクトルを重ね た図を,図 15 にはスキーラキャビティ内の流れの 3 次元流線 を示す.

翼端面および Tip 側 EW 上の計算結果と可視化実験結果に よる限界流線を比較すると、同様の流れの挙動を示しており 全体的に良好な一致が見られる(図 10.12). スキーラ翼端の無 い D=0 mm の漏れ流れは圧力面および負圧面前半部から翼端 間隙内に流入し、負圧面後半部から翼間流路内に流出してい る(図 9,図 11). スキーラ翼端の有る D=4 mm においても D=0 mm の場合と同様に漏れ流れは圧力面および負圧面前半部か ら翼端間隙内に流入している(図 10,図 12). スキーラキャビテ ィ底面では圧力面側のリムに沿って逆流を伴うはく離線(図 中の一点鎖線)が確認できる(図 10(a),図 12(a)). 一方, Tip 側 EW ではそのはく離線より下流側で順流を伴うはく離線(図 中の破線) が確認できる(図 10(b),図 12(b)). これは漏れ流れが 翼端間隙内からスキーラキャビティ内へ入る際に、流路断面 積拡大に伴う逆圧力勾配の影響を受けて、はく離渦 V1を形成 していると考えられる(図 14). また, 負圧面前半部のリムに 沿ってもキャビティ底面に逆流を伴うはく離線(図中の一点 鎖線) が確認できる(図 10(a),図 12(a)). このはく離線は負圧面 前半部から翼端間隙内へ流入する漏れ流れが、V1と同様の原 因によりはく離渦 V2を形成していると考えられる. 圧力面お よび負圧面前半部から流入した漏れ流れはそれぞれ V1 と V2 を形成し、V1は圧力面側のリムに沿ってキャビティ内を進み 負圧面後縁付近から流出し、V2は負圧面前半部のリムに沿っ て流れるが翼転向部へは向かわず負圧面後半部より翼間流路 内に流出している(図 12(b),図 13(b),図 15). キャビティ内の負 圧面転向部付近に高圧領域が分布している(図 14). この圧力 上昇は同領域におけるキャビティ底面上の流れが圧力面へ向 かって逆流していることから(図 13(a),図 14(a)), 主に負圧面前 半部からキャビティ内に流入した漏れ流れが負圧面転向部の リムに衝突することによるものと考えられる.また、この逆 流は V2 と干渉することにより負圧面前半部のリム付近に時 計回りの循環流V3を形成していることが確認できる(図14(a)). この V3 の径は非常に小さいため可視化実験結果においては 確認できないが、図 12(a)の赤の矢印で指す付近にわずかな油 溜まりが確認でき、その存在を示唆していると考えられる. この逆流と V3により V2 が負圧面転向部ではなく負圧面後半

部へ偏向した原因であると考えられる. さらに V_1 と V_2 に囲 まれたキャビティ底面中央部には油溜まりが確認でき、よど み状態になっている(図 12(a)). この領域には反時計回りの循 環流 V4 が存在することが確認できる(図 13,図 14). キャビテ ィ内前縁付近の逆流領域に低圧領域が分布している(図 14(a)). この低圧領域は V1 と V2 が連結する領域であることから,各 渦の回転中心付近の圧力低下が相乗的に引き起こしたものと 考えられる.また、V1は圧力面に対してほぼ垂直に翼端間隙 内に流入する漏れ流れによって形成されているのに対して、 V2は負圧面に対して接線方向に近い角度で流入する漏れ流れ によって形成されている(図 12,図 15). したがって、V1よりも V2の方が回転軸方向の速度成分が支配的なピッチの長い螺旋 渦となっている. その結果, この低圧領域がキャビティ底面 上の V1 と V2 の間のよどみ領域の低運動エネルギー流体を引 き込み、また逆方向に流れる特にピッチの長い方の V2と干渉 することにより循環流 V4 が形成されたと考えられる. V4 と 同様の循環流はTip 側 EW でも確認できることから、V4はキ ャビティ底面から Tip 側 EW に至る回転軸を有する渦である と考えられる(図 10,図 12). また V4の回転中心付近の圧力が 低下していることからこの渦は負圧面後半部から流出する漏 れ流れを巻き込んで吸収し、さらに圧力面から流入してきた 漏れ流れをブロックする効果があると考えられる.以上の結 果から、 $V_1 \ge V_2$ の漏れ流れの流入抑制効果と V_4 の漏れ流れ のブロック効果および流出抑制効果により漏れ流れが低減し, 翼列下流での総損失の低下につながったと考えられる.

6. 結論

本研究により以下の結論を得た.

- 1. スキーラ翼端は翼間前半部では圧力面側から翼端間隙内 へ流入する漏れ流れを抑制することにより流路渦とそれ に起因する損失を増加させる.
- 2. スキーラ翼端は漏れ流れを抑制することにより、漏れ渦 とそれに起因する損失を低減させる. さらに漏れ渦の低 減により、その流路渦との干渉およびそれに起因する損 失生成も低下させる.
- 3. スキーラ翼端は圧力面と負圧面前半部のリムに沿うはく 離渦とキャビティ中央部に循環流を形成し、それらの流 入抑制効果とブロック効果により漏れ流れを弱め、それ に起因する損失生成を低減させる.

参考文献

- (1) 山本 孝正, "タービンの最近の技術進歩について",日 本ガスタービン学会誌, Vol.21, No.84, (1994), pp.40-46.
- (2) 江藤,朝賀,辻田,水木,山本,"超高負荷直線タービン 翼列試験風洞内の流れの数値解析",日本機会学会東北支 部第 40 期総会·講演会講演論文集,No.051-1,(2005-3),pp.12-13.

第32回数値流体力学シンポジウム

Fig.15 Streamlines in squealer cavity (D=4 mm,Calc.)

Copyright © 2018 by JSFM