2次元丘を通過する共存対流乱流境界層の予測に関する研究

Study on predictions of combined-convection turbulent boundary layer through 2D hill

 字佐美達也,名古屋工業大学大学院,名古屋市昭和区御器所町 服部博文,E-mail:hattori@nitech.ac.jp 保浦知也,田川正人,名古屋工業大学

T. Usami, H. Hattori, T. Houra and M. Tagawa

Department of Electrical and Mechanical Engineering,

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555

In this study, in order to evaluate predictions of heat transfer phenomena in a complex combined-convection turbulent boundary layer by both LES and RANS using the DNS results, a combined-convection turbulent boundary layer through 2D hill of a Direct Numerical Simulation (DNS), a Large Eddy Simulation (LES) and a Reynolds-Averaged Navier-Stokes equation Simulation (RANS) are carried out. In the evaluation results, RANS gives slightly difference predictions in comparison with DNS results around hill, but LES predicts the combined-convection turbulent boundary layer very well when the adequate grid is used. Thus, a turbulence model used in RANS should be improved for the prediction of complex combined-convection turbulent boundary layer.

1. 緒言

乱流境界層が形成される壁面近傍において、壁面形状 が乱流熱・物質輸送現象に大きく影響する一因であるた め、その影響を明らかにすることは熱や物質拡散現象を 理解する上で重要な問題である. そこでは, 乱流境界層に 温度成層を伴い共存対流となっていることが多いと考え られるため、その共存対流乱流場の熱伝達現象と構造を 詳細に解析する必要がある. そのためには、コンピュータ による数値解析を行うことが有効であるが、その手法の 一つとして, 直接数値シミュレーション (Direct Numerical Simulation: DNS) がある. DNS は流れを支配する基礎方 程式をモデル化を行わず直接解くことで精密な解が得ら れるため、熱流体の物理現象の解明に広く用いられてい る. しかし DNS は, 膨大な計算時間とコストが必要とな るため、実用上の熱伝達問題に対しては適用することが 難しい.一方,近年では,乱流諸統計量に計算格子フィ ルターをかけ,格子スケール以上(Grid Scale: GS)の渦 と,格子スケール以下(Sub-Grid Scale: SGS)の渦に分 解して計算する大規模渦シミュレーション法(Large Eddy Simuration (LES))や、乱流熱伝達現象の支配方程式にレ イノルズ平均を施すことから生じるレイノルズ応力と乱流 熱流束に対して人為的モデルを与え,時間平均値のみを計 算するレイノルズ平均方程式シミュレーション (Reynolds-Averaged Navier-Stokes equation Simulation: RANS) を利 用した解析も実用的となっている. この大規模渦シミュ レーション (LES), レイノルズ平均モデル (RANS) など の乱流モデルによる数値解析は、DNS と比べて必要とな る格子点数を減らすことが出来るため、計算負荷・コス トの軽減が可能となり、工学的な目的で使用するのに適 している.しかし、これらのモデル解析では適切な乱流 モデルを選定する必要があり、とりわけ複雑壁面形状を

有する流れ場での解析ではモデルによって予測結果が大 きく左右される.また,乱流モデルは,より複雑な乱流熱 伝達場での予測精度には不明な点が多く,さらに予測精 度の検証が必要であるため,複雑な乱流熱伝達場である 複雑乱流熱伝達場の LES, RANS による予測精度を検証 することは非常に重要である.したがって本研究では,2 次元丘を有する計算場に関して DNS による解析に加え, LES, RANS を用いた数値計算を行い,計算結果を DNS の結果と比較することで,乱流モデルの予測性能評価を行 う.

2. 支配方程式と計算手法

 ∂u_i

 ∂x_i

2.1 DNS における支配方程式と計算条件

本研究で実行する共存対流乱流境界層 DNS に用いる 支配方程式は, Boussinesq 近似を施した Navier-Stokes 方 程式と連続の式,およびエネルギー式で構成される⁽¹⁾.

$$\frac{Du_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re_{\delta_{2,in}}} \frac{\partial^2 u_i}{\partial x_j \partial x_j} + \delta_{i2} Ri_{\delta_{2,in}} + \mathbf{f} \qquad (1)$$

$$=0$$
 (2)

$$\frac{D\theta}{Dt} = \frac{1}{Pr \ Re_{\delta_{2,in}}} \frac{\partial^2 \theta}{\partial x_j \partial x_j} + \mathbf{f}$$
(3)

ここで, $D/Dt (= \partial/\partial t + u_j \partial/\partial x_j)$ は実質微分, δ_{i2} は クロネッカーのデルタ, **f** は後述する境界埋め込み法によ る外力である.また上式は後述するドライバー部入口で の主流速度 U_0 , 運動量厚さ $\delta_{2,in}$, 主計算部の主流温度と 壁面温度の温度差 ($\Theta_e - \Theta_w$)で無次元化されている.

支配パラメーターはレイノルズ数 $Re_{\delta_{2,in}} (= \overline{U}_0 \delta_{2,in} / \nu),$ リチャードソン数 $Ri_{\delta_{2,in}} (= g\beta \delta_{2,in} \Delta \Theta / \overline{U}_0^2)$ とプラントル 数 $Pr(=\nu/\alpha)$ であり, それぞれ $Re_{\delta_{2,in}} = 300, Ri_{\delta_{2,in}} =$ 0 (中立成層), Pr = 0.71 とした.また, ν は動粘性係

Tab. 1: Computational method

Grid system	Staggered grid
Coupling algorithm	Fractional step method
Time advancement	Adams-Bashforth method
	(Convec. & Buoy. terms)
	Crank-Nicolson method (other terms)
Spatial scheme	2nd-order central difference

数, α は温度伝導率, β は体膨張係数,gは重力加速度である.

DNS の格子点数は主計算部で $x \times y \times z = 392 \times 128 \times 128$, ドライバー部は $x \times y \times z = 192 \times 128 \times 128$ である. 速度場の境界条件には、壁面に滑りなし条件 (u = v = w = 0), 上方境界面には次式の境界条件を与えた.

$$\frac{\partial u}{\partial y} = 0, \quad \frac{\partial w}{\partial y} = 0, \quad \frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} - \frac{\partial w}{\partial z}$$
(4)

温度場の境界条件については,壁面に一様温度加熱条件として $\theta = 0$,上方境界面は一定温度として $\theta = 1$ を与えた.また,流出境界条件は,速度場と温度場ともに以下の対流流出境界条件を適用した⁽¹⁾.

$$\frac{\partial u_i}{\partial t} + U_c \frac{\partial u_i}{\partial x} = 0, \quad \frac{\partial \theta}{\partial t} + U_c \frac{\partial \theta}{\partial x} = 0 \tag{5}$$

ここで、Uc は流出断面でのバルク平均速度である.

スパン方向については速度場,温度場ともに周期境界 条件を適用した.また,2次元丘の形状を表すため,本 研究では次節で示す直接強制境界埋め込み法⁽²⁾を用い ている.

$$\mathbf{f} = -RHS + \left(\mathbf{\Phi}_{i,j,k}^{n+1} - \phi_{i,j,k}^{n}\right) / \Delta t \tag{6}$$

ここで、RHS は運動方程式やエネルギー方程式の対流項 を移項した右辺を示し、 $\Phi_{i,j,k}^{n+1}$ はその隣接格子点の速度 や温度と壁面上の値(無次元速度と温度共に0)を補間 して与えた境界値である.また、 $\Phi_{i,j,k}^{n+1}$ 及び $\phi_{i,j,k}^{n}$ はいず

Fig. 1: Computational domain and coordinate system

れも,壁面と一致するか,または流体領域内で壁面に最 も近い格子点における速度もしくは温度である.ただし, この他の流体領域では $\mathbf{f} = 0$,物体内部は $\Phi_{i,j,k}^{n+1} = 0$ と する.境界体積力は時間ステップ*n*における値 $\phi_{i,j,k}^{n}$ が 次の時間ステップ*n*+1には $\Phi_{i,j,k}^{n+1}$ となるように陰的に 取り扱う.

2.2 LES における支配方程式

LES で用いる支配方程式は,式(7)~(9) に対してフィ ルター操作が施された運動方程式(Navier-Stokes 方程式) と連続の式,およびエネルギー式である⁽³⁾.

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0$$
(7)
$$\frac{D\bar{u}_i}{Dt} = -\frac{\partial \bar{p}}{\partial x_i} + \frac{2}{Re_b} \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j} + \delta_{i2} R i_{\delta_{2,in}} + \mathbf{f}$$
(8)

$$\frac{D\bar{\theta}}{Dt} = \frac{2}{PrRe_b} \frac{\partial^2 \bar{\theta}}{\partial x_j \partial x_j} - \frac{\partial q_j}{\partial x_j} + \mathbf{f}$$
(9)

ここで,()は,フィルターで租視化された成分(GS成分), τ_{ij} (= $\overline{u_i u_j}$ - $\overline{u}_i \overline{u}_j$)はSGS応力項, q_i (= $\overline{u_i \theta}$ - $\overline{u}_i \overline{\theta}$)はSGS熱流束項であり,これらのSGSモデルは次のような渦粘性表現に基づき与えられる⁽³⁾.

$$\tau_{ij} = -\nu_{SGS} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) + \frac{1}{3} \delta_{ij} \tau_{kk} \qquad (10)$$

$$q_j = -\alpha_{SGS} \frac{\partial \theta}{\partial x_j} \tag{11}$$

ここで、 ν_{SGS} は運動量の SGS 渦拡散係数、 α_{SGS} は熱 の SGS 渦拡散係数、 δ_{ij} はクロネッカーのデルタである. 式 (10) における速度場 SGS モデルには、次のように壁 面減衰関数 f_{μ} を乗じることによって ν_{SGS} の壁面漸近挙 動が適切になるように修正した MTS モデル(以下 MTSn モデル)を用いた.

$$\nu_{SGS} = C_{MTSu} f_{\mu} k_{es} \tau_{u}$$

$$f_{\mu} = \left[1 - \exp\left\{ -(n_{\varepsilon}/A_{\mu})^{\frac{4}{3}} \right\} \right]^{1/2}$$

$$n_{\varepsilon} = u_{\varepsilon} n/\nu, \ u_{\varepsilon} = (\nu \varepsilon_{SGS})^{\frac{1}{4}} (C_{l} n/\overline{\Delta})^{\frac{1}{2}}$$

$$\varepsilon_{SGS} = C_{\varepsilon} \frac{k_{es}^{3/2}}{\overline{\Delta}} + 2\nu \frac{\partial \sqrt{k_{es}}}{\partial x_{j}} \frac{\partial \sqrt{k_{es}}}{\partial x_{j}}$$
(12)

ここで,各モデル定数は $C_{MTSu} = 0.025$, $A_{\mu} = 2$, $C_l = 4$, $C_{\varepsilon} = 0.835$ であり, n は壁面からの最短距離, $\overline{\Delta}$ は 計算格子幅(格子セル体積の 1/3 乗), k_{es} は推定 SGS 乱 流エネルギーであり,スケール相似則を利用して SGS 乱 流エネルギー k_{SGS} を推定したものである⁽³⁾.

一方,式 (11) における温度場 SGS モデルは次式のモ デルを用いた.

$$\alpha_{SGS} = C_{MT\theta} f_{\lambda} k_{es} \tau_{\theta}$$

$$f_{\lambda} = \left[1 - \exp\left\{ -(n_{\varepsilon}/A_{\lambda})^{\frac{4}{3}} \right\} \right]^{1/2}$$
(13)

Copyright © 2018 by JSFM

ここで、 τ_{θ} は速度場と温度場の混合時間スケール、モデ ル定数は $C_{MT\theta} = 0.042$, $A_{\lambda} = 10$ である. LES の格子 点数は主計算部で $x \times y \times z = 196 \times 64 \times 64$, ドライバー 部は $x \times y \times z = 96 \times 64 \times 64$ である. これは DNS の場 合と同じ領域長さで、使用する格子点数を各方向半数ずつ としたものである. 格子点数以外の計算条件は DNS と同 じに設定してある.

2.3 RANS における支配方程式

本研究の RANS で用いる支配方程式は,非圧縮を仮定 し,レイノルズ平均を施した運動方程式(Navier-Stokes 方程式)と連続の式,およびエネルギー式である⁽⁴⁾.

$$\bar{U}_{j}\frac{\partial\bar{U}_{i}}{\partial x_{j}} = -\frac{1}{\rho}\frac{\partial\bar{P}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left(\nu\frac{\partial\bar{U}_{i}}{\partial x_{j}} - \overline{u_{i}u_{j}}\right) + \delta_{i2}Ri_{\delta_{2,\mathrm{in}}} + \mathbf{f}$$
(14)

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{15}$$

$$\bar{U}_j \frac{\partial \bar{\Theta}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\alpha \frac{\partial \bar{\Theta}}{\partial x_j} - \overline{u_j \theta} \right) + \mathbf{f}$$
(16)

ここで \bar{U}_i は x_i 方向速度, $\bar{\Theta}$ は温度, \bar{P} は圧力, ρ は密度, ν は動粘性係数, α は熱拡散率である.また,式(14)中のレイノルズ応力 $\overline{u_i u_j}$ と式(16)中の乱流熱流束 $\overline{u_j \theta}$ は以下のようにモデル化される⁽⁴⁾.

$$\overline{u_i u_j} = \frac{2}{3} k \delta_{ij} - 2\nu_t S_{ij} \tag{17}$$

$$\overline{u_j\theta} = -\alpha_t \left(\frac{\partial\bar{\Theta}}{\partial x_j}\right) \tag{18}$$

ここで、 ν_t は運動量の渦拡散係数、 α_t は熱の渦 拡散係数、k (= $\overline{u_i u_i}/2$) は乱流エネルギー、 S_{ij} [= $(\partial \overline{U}_i / \partial x_j + \partial \overline{U}_j / \partial x_i)/2$] は速度歪テンソル、 δ_{ij} は クロネッカーのデルタである.これら渦拡散係数も場の関 数であるため、さらにモデル化され、そのモデルを構成す る変数の輸送方程式を解くことによって与えらえる^(5, 6).

丘高さは DNS に合わせ, $h = 3\delta_{2,in}$, 計算領域 $x \times y = 100\delta_{2,in} \times 30\delta_{2,in}$ とし, 格子点数は $x \times y = 197 \times 65$ とした.

壁面における速度場境界条件はすべりなし条件,上方 境界条件および流出条件は速度場,温度場ともに自由流 出条件を設定した.数値解法は独自にプログラミングし た有限体積法と SIMPLE 法⁽⁷⁾による解法を用い,対流 項の影響を考慮して 2 次精度が保証される QUICK 法⁽⁸⁾ を採用している.また,2次元丘の表現には境界埋め込 み法^(2,9)を用いた.なお,RANSで用いた乱流熱伝達モ デルは,Abeらによる速度場 2 方程式モデル⁽⁵⁾と,温度 場 2 方程式モデル⁽⁴⁾(AKN モデル),Hattori-Tsutsui に よるマルチタイムスケール乱流熱伝達モデル⁽¹⁰⁾である (HT モデル).

Fig. 2: LES predictions of turbulent quantities in combinedconvection boundary layer over 2D hill

LES と RANS における計算パラメーターは,作動流体 を空気と想定し,プラントル数 *Pr* は 0.71,主流速度 \bar{U}_0 と,運動量厚さ $\delta_{2,in}$ で定義されたレイノルズ数 $Re_{\delta_{2,in}}$ は 300 とした.最終目標は,共存対流乱流境界層の予測 評価であるが,2次元丘は壁面曲りを伴う複雑乱流場で あるため,まずは $Ri_{\delta_{2,in}} = 0$ の強制対流場における予測 を行った.

3. 計算結果および考察

本節で示す図表で用いる座標について, x_c は丘の中心 を原点としたx座標であり,長さはいずれの場合も丘高さ $3\delta_{2,in}$ で正規化している.図 2(a)から図 3(d)に,乱流モ デルによる予測計算結果と,別途行ったそれぞれのDNS との比較を示す.まず,LESの計算では,混合時間スケー

(d) Mean temperature

Fig. 3: RANS predictions of turbulent quantities in combined-convection boundary layer over 2D hill

ルによる乱流モデル (MTSn モデル) を用いた. 図 2(a) か ら図 2(d) より, 平均速度, 平均温度の予測は概ね一致して いるように見えたが, 丘後方の再付着点距離が過大に予 測されていた. これら結果に対して格子依存性を調べる ため, 格子点数を DNS の条件と一致させて再度モデルの 数値計算を行った結果, 丘後方の剥離・再付着が DNS の 結果とよく一致しており, 温度場の予測結果も向上した. RANS の計算では, AKN モデル, HT モデル ⁽¹⁰⁾ (図中 では, Imp. *S*- Ω と表記) による計算を実施した. 図 3(c) で示したレイノルズせん断応力を見ると, 丘頂上付近で DNS と比較して過大予測していることが分かり, 丘後方 の再付着点についても DNS と比較してより長い予測値を 与えている. また, いずれのモデルでも, DNS では丘前 方で – \overline{uv} < 0 となっていた領域を予測できなかった. こ れらの速度場の乱流諸量予測値の影響により,温度場の 予測値においても,DNSとの若干の不一致がみられる.

4. 結言

本研究では、2次元丘を通過する共存対流乱流境界層 を DNS によって解析し、その結果を用いて LES と RANS における乱流熱伝達モデルによる予測値の評価を行った. 予測評価は強制対流場で行われたが、丘周りの乱流現象 に着目すると、乱流熱伝達モデルによる計算は、壁面近 傍で DNS と予測値の不一致が観察される場所がある結果 となった.よって、はく離、再付着現象を伴う複雑乱流 熱伝達場の予測精度を向上させるためには、さらなる乱 流熱伝達モデルの改良が必要であると考えられる.

謝辞

本研究は,総合科学技術・イノベーション会議の SIP (戦略的イノベーション創造プログラム)【高効率ガソリ ンエンジンのためのスーパーリーンバーン研究開発】(管 理法人:JST)と,JSPS 科研費 17K06195 の助成を受け た.ここに記して謝意を表す.

参考文献

- (1) H. Hattori, T. Houra, and Y. Nagano. *International Journal of Heat and Fluid Flow*, Vol. 28, pp. 1262–1271, 2007.
- (2) E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusofz. *Journal of Computational Physics*, Vol. 161, pp. 35–60, 2000.
- (3) M. Inagaki, T. Kondoh, and Y. Nagano. *Journal of Fluids Engineering*, Vol. 127, Issue 1, pp. 1–13, 2005.
- (4) K. Abe, T. Kondoh, and Y. Nagano. *International Journal of Heat Mass Transfer*, Vol. 38, pp. 1467–1481, 1995.
- (5) K. Abe, T. Kondoh, and Y. Nagano. *International Jour*nal of Heat Mass Transfer, Vol. 37, pp. 139–151, 1994.
- (6) Y. Nagano and H. Hattori. *International Journal of Heat and Fluid Flow*, Vol. 51, pp. 221–228, 2015.
- (7) スハス.V. パタンカー. コンピュータによる熱移動と 流れの数値解析, 1985.
- (8) T. Hayase, J.A.C. Humphrey, and R. Greif. *Journal of Computational Physic*, Vol. 98, No. 1, pp. 108 118, 1992.
- (9) H. Hattori, T. Umehara, and Y. Nagano. *Flow, Turbulence and Combustion*, Vol. 90, No. 3, pp. 491–510, February 2013.
- (10) H. Hattori and K. Tsutsui. International Journal of Advances in Engineering Sciences and Applied Mathematics, Sep 2018.