歯茎摩擦音発音シミュレーションにおける口腔内気流と空力音源の in-situ 可視化

In-situ visualization of air flow and sound source for the simulation of sibilant fricative production

 林賢悟,神戸大,兵庫県神戸市灘区六甲台町 1-1, 171x219x@stu.kobe-u.ac.jp 吉永司,阪大基工,大阪府豊中市待兼山町 1-3, t.yoshinaga@me.es.osaka-u.ac.jp 野崎一徳,阪大,大阪府吹田市山田丘 1-8, knozaki@dent.osaka-u.ac.jp 野中丈士,理研,兵庫県神戸市中央区都島南町 7-1-26, jorji@riken.jp 坂本尚久,神戸大,兵庫県灘区六甲台町 1-1, naohisa.sakamoto@people.kobe-u.ac.jp Kengo Hayashi, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo Tsukasa Yoshinaga, Osaka University, 1-3, Machikaneyama-cho, Toyonaka-shi, Osaka Kazunori Nozaki, Osaka University, 1-8, Yamadaoka, Suita-shi, Osaka Jorji Nonaka, RIKEN R-CCS, 7-1-26, Miyakojimaminamimachi, Chuo-ku, Kobe-shi, Hyogo Naohisa Sakamoto, Kobe Univercity, 1-1, Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo

We propose in-situ visualization which performs aeroacoustic simulation and visualization of sibilant/s/ at the same time without outputting large-scale data to the storage. The visualization system enables to visualize the large-scale simulation data by plotting images with pre-registered settings at each processor during the simulation. In the numerical experiment, the cost of large-scale data I/O to HPC storage and the cost of transferring the data from HPC to local PC for in-situ visualization were reduced compared to those for the previous visualization method. The results indicate that it is possible to reduce the time of whole process from acquisition of a medical image of /s/ to the aeroacoustic simulation and visualization of sound source for speech therapy by performing the in-situ visualization.

1. 研究背景

歯茎摩擦音は日本語のサ行を発音する際に用いられる/s/や/sh/ 等の音である.この摩擦音を発音する際には、口腔の前方部で上 顎と舌先端により狭窄流路を形成し、狭窄流路から発生したジェ ット流から音が発生することが知られている⁽⁰⁾.また口腔形状の異 常やダウン症等による舌機能の障害のため、狭窄流路を上手く形 成できずに摩擦音の構音障害となることが報告されている⁽²³⁾.そ のため、口腔内でどのように狭窄流路を形成し、どのようにジェ ット流から音が発生するのかを明らかにすることが、言語聴覚士 の行う構音障害患者へのリハビリ治療の支援に活かすことができ ると期待されている.

この摩擦音の発生メカニズムを調べるため, CT 画像から取得し た口腔形状に対して圧縮性流体のラージエディーシミュレーショ ン (Large Eddy Simulation, LES) を行うことで、ジェット流の発生 と音の伝播を同時に計算し、気流と音の可視化により発音メカニ ズムが調べられている(4. この際、ジェット流による乱流を解像す るよう計算格子を小さく設定するため、計算が大規模になると同 時に、音伝播の計算のために時間ステップを音速に合わせて小さ く設定する必要があり、非常に計算時間がかかる.また、解析手 順としては、スーパーコンピュータなどを利用して大規模並列シ ミュレーションを行い、計算領域の分割結合、可視化や分析処理 はユーザーの手元のPCで行っていた.しかし、この従来法ではシ ミュレーションによって得られる数値データをスーパーコンピュ ータのストレージに出力するデータ I/O のコスト及び, スーパー コンピュータから手元の PC にデータを転送する通信コストがボ トルネックとなり可視化するまでに非常に時間を要していた.ま た出力するデータサイズが大きくなりすぎるのを防ぐために、シ ミュレーションによって得られるデータをある一定間隔の時間ス テップで出力している. これは時間方向にデータを間引いている ため、短い時間で急激な変化が起きている場合には、解析する際 に重要なデータを失っている可能性がある.

そこで本研究では、大規模な数値データをストレージに出力す ることなくシミュレーション実行と同時に可視化処理をする in-Copyright © 2018 by JSFM1 situ 可視化を行うことでこれらの問題を解決し、可視化処理に時間 を要することなく効率よく分析することのできるシステムの構築 を行う.本研究で構築したシステムを用いてシミュレーションと 可視化を行うことにより、従来非常に時間がかかっていた医療画 像の取得からリハビリ支援に利用可能な可視化までの時間を短縮 し、シミュレーションの医療応用への可能性を広げることができ る.

2. 手法

歯茎摩擦音の発音のシミュレーションでは圧縮性流体の3次元 Navier-Stokes 方程式と状態方程式を離散的に解いている⁽⁴⁾. それら の式を有限体積法数値計算ソフトウェア OpenFOAM 2.3.1 を用い て口腔流路内の格子点上で計算を行う.

In-situ 可視化ではFig.1のようにシミュレーションによって得られた大規模な数値データをストレージに出力することなく可視化処理を行う.よってシミュレーション終了時にはin-situ 可視化処理によって得られた画像または動画ファイルがストレージには保存されており、この画像データをユーザーは手元の PC に転送することでシミュレーション結果の分析を行うことができる.シミュレーションと同時に可視化処理を行うため、シミュレーション コードに可視化処理のコードを追加する必要がある.今回のシミュレーションはOpenFOAMを利用しているため、このOpenFOAMの流体ソルバから直接 In-situ 可視化の疑似コードを示す.11 行目に挿入した insitu_vis() により可視化するタイミングと内容を指定する.可視化内容としては、断面におけるコンター図や変数の等値 面だけでなく、ボリュームレンダリングなど様々可視化手法を指定することができる.

Fig. 1 In-situ visualization processing pipeline.

```
//simulation code
1.
       float data_array[];
2.
       float coords[]; // Mesh coordinate information
з.
4.
       int connection[]; // Mesh connection information
5.
6.
       init_simulation();
7.
8.
       while( now_time == end_time )
9.
10.
         solver( data_array, coords, connection );
    insitu_vis( data_array, data_size, coords,
connection, now_time );
11.
12.
       }
13.
14.
       end simulation();
```

Fig. 2 Sample simulation code inserting in-situ visualization function.

可視化ライブラリには KVS (Kyoto Visualization System) ⁽⁶⁾を利 用し, 大規模な非構造六面体格子を可視化する必要があるため, 今回レンダリング手法としては, 大規模な非構造格子データの有 効な PBVR (Particle Based Volume Rendering) ⁽⁶⁾によってボリュー ムレンダリングを行う.

本研究では、歯茎摩擦音/s/の発音に関して、大規模計算の in-situ 可視化を試みる.まず、歯茎摩擦音/s/発音時の口腔形状を CT 画像 より抽出し、計算格子を構築した.そして圧縮性流体のラージェ ディーシミュレーション(LES)を行うことにより、発音時の口腔内 のジェット流と空力音の発生を計算する.そして、各時間ステッ プの計算終了時に解析を行う変数について可視化処理を行い、画 像データをプロセスごとに作成し、画像重畳処理を行うことで最 終画像を出力する.つまり最終画像の出力までは並列に可視化処 理を実行することができる.

数値実験には、CPUが Intel Xeon Platinum 8168, 64Cores, メモリ が 128GB の環境上で実行し,非構造六面体格子に対して in-situ 可 視化処理を行った。要素数は 3,197,279 であり, 48 領域に要素を分 割して計算処理を行った.可視化処理によって出力される画像の 解像度は 2048×2048 で行った.

3. 結果と考察

In-situ 可視化によって得られた画像を Fig.3 に示す. (a)はタイム ステップ 2,000, (b)はタイムステップが 20,000 における口腔の正中 矢状面の流速コンター図を可視化した結果である. この時, 流速 が... m/s 以上の領域のみを表示している. そのため, Fig. 3(a)の 2000 ステップでは狭窄流路のみで気流が可視化されているのに対 し, Fig. 3(b)の 20,000 ステップでは咽頭から狭窄流路の流速が上昇 し, 狭窄流路後流においてジェット流による乱流が発達している 様子がわかる.

Fig. 3 Visualization of flow velocity magnitude in hexahedral unstructured volume data using in-situ visualization function. (a) : time step of 2000, (b) : time step of 20000.

また1タイムステップあたりにおけるシミュレーション処理に かかる時間と可視化処理にかかる時間をそれぞれ計測した. Conversion はシミュレーションから得られたデータ配列や座標情 報などを可視化ライブラリに合わせたデータフォーマットに変換 する時間である. Visualization は PBVR 独自の処理であるマッピン グ処理(粒子生成処理),レンダリング処理(粒子投影処理)と画 像重畳処理を合計した値である. Output は最終画像を出力する際 にかかる時間である. 結果を Table.1 に示す.

Table.1 Execution time in simulation and visualization processing

	Simulation	Conversion	Visualization	Output
Time (sec.)	3.051	0.203	1.782	0.219
Ratio (%)	58.1	3.9	33.9	4.1

Table.1 より可視化処理にかかる時間が 33.9%と3 割近くの時間 を要していることが確認できる.これに関しては、解像度や PBVR 独自の可視化パラメータを変更することで、より高速化すること も可能であり、また時間をかけてより高画質の画像を作成するこ ともできる. 今後は、音発生のメカニズムを分析するのに適した 画質と計算時間とのバランスを考慮した可視化処理を行う必要が ある.

またシミュレーションによって得られる数値データと可視化処 理によって得られる画像データで出力時間,データサイズをそれ ぞれ計測した. 結果を Table.2 に示す.

Table.2 Output time of simulation and visualization

	Simulation Output	Visualization Output
Time (sec.)	2.368	0.219
Data Size(Mb)	66.11	12.0

Table.2 よりシミュレーションで得られたデータを直接出力す るよりも可視化処理を行った画像を出力する方が、時間、データ サイズともに効率がよいことが確認できる。当然データサイズが 小さいほど転送コストも小さくなるため、従来法で問題であった ストレージへのデータ I/O のコスト及びスーパーコンピュータか ら手元の PC へのデータ転送コストを削減することに対して有効 であることを示すことができた。

5. まとめ

本研究では、歯茎摩擦音/s/の発音に関する大規模空力音響解析 において、シミュレーション実行中に可視化処理を行う in-situ 可 視化システムを構築した.実験により従来法で問題であった大規 模な数値データをストレージに出力するデータ I/O のコスト及び スーパーコンピュータから手元の PC にデータを転送するコスト を削減できることを示した.

今後はより解析を行うのに適した可視化処理を行うために出力 する画像を工夫するとともに、単に可視化処理をするだけでなく 分析処理まで行うことのできる可視化システムの構築を行う.ま た in-situ 可視化処理によってシミュレーション時間が増大するの を防ぐために、シミュレーション計算を行うプロセスと可視化処 理を行うプロセスを分断する Loosely Coupled In-situ 可視化処理シ ステムの構築を試みる.

参考文献

- (1) G. Fant "Acoustic theory of speech production," Mouton, The Hague, Paris (1960), 328.
- (2) C. Runte, M. Lawerino, D. Dirksen, F. Bollmann, A. Lamprecht-Dinnesen, and E. Seifert "The influence of maxillary central incisor position in complete dentures on /s/ sound production," The Journal of Prosthetic Dentistry (2001) 85, 485-495.
- (3) S. Wood, J. Wishart, W. Hardcastle, J. Cleland, and C. Timmins "The use of electroparatography (EPG) in the assessment and treatment of motor speech disorders in children with Down's syndrome: Evidence from two case studies," Developmental Neurorehabilitation(2009), 12, 66-75.
- (4) 吉永,野崎,安福,木戸,下條,和田 "空力音響シミュレーションと大規模可視化システムを用いた摩擦音発音の可視化" NIGOGRAPH (2017), pp56-59.
- (5) Sakamoto, Naohisa, and Koji Koyamada. "KVS: A simple and effective framework for scientific visualization." Journal of Advanced Simulation in Science and Engineering 2.1 (2015), pp76-95.
- (6) Sakamoto, Naohisa, et al. "Particle-based volume rendering." Visualization, 2007. APVIS'07. 2007 6th International Asia-Pacific Symposium on. IEEE (2007).