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A novel filtered cumulant lattice Boltzmann method (FCLBM) has been developed to solve advanced two-

phase flow problems such as those of violent flows or with complex geometry. The proposed method employs 

a combination of a velocity-based formulation of the two-phase LBM with a cumulant collision model and a 

velocity-field filter to obtain time-dependent velocity and pressure fields.  For the interface capturing, a 

conservative phase-field lattice Boltzmann method (CPFLBM) is employed which guarantees the mass 

conservation. The proposed method has been validated using several benchmark problems and the results 

show good agreements with the references. The proposed method has been applied to simulate violent two-

phase flows and the results show qualitatively good agreements with the references. Currently, the proposed 

method is being studied for two-phase flow problems with complex geometry. 

 

 

1. Introduction 

LBM has become a popular alternative method in computational 

fluid dynamics. Due to its simple kinetic equation [1], LBM has 

several advantages such as no pressure Poisson equation, efficient 

for massive parallel computation, and capable of handling complex 

geometries. 

Because of its promising features, LBM is continually being 

extended for a wider range of applications. One such application is 

the simulation of two-phase flow problems such as Rayleigh-Taylor 

instability, bubble, and droplet dynamics. Many models were 

developed to for such applications such as Ba’s color-gradient, Wu’s 

pseudo-potential, Huang and Wang’s free-energy, Zheng’s mean-

field, Kim and Pitsch’s velocity-formulation, Wang’s flux-solver, 

Fakhari’s phase-field, and Inamuro’s improved lattice kinetic models 

[2-9]. All these models were able to simulate problems with high 

density ratio, typically about 1000. 

Despite the many successes, several problems have not been 

studied such as the simulation of violent two-phase flows and two-

phase flow problems with complex boundaries. In case of violent 

two-phase flows, the problem is difficult to solve because its density 

ratio and Reynolds number are high (about 1000 and more than 105, 

respectively), and there are rapid and complex topological changes. 

The simulation of this problem may be unstable if previous LBMs 

are applied. In case of the phase flow problems with complex 

boundaries, the problem may be difficult to solve by conventional 

method as the applied method must guaranteed mass conservation 

and stability when dealing with complex boundaries. LBM is known 

to be conservative and capable of handling complex boundaries.  

In this paper, we propose a filtered cumulant two-phase LBM with 

an adaptive filter and show that it is suited to solve the problem. The 

filtered cumulant LBM is based on Kim and Pitsch’s velocity-

formulation model which is extended by employing the cumulant 

collision model [6, 12]. For the inter-face capturing, the conservative 

phase-field lattice Boltzmann method is employed which 

guarantees the mass conservation [13]. 

 

2. Numerical methods 

Filtered cumulant lattice Boltzmann method (filtered CLBM) is 

employed to simulate the fluid motion. The cumulant LBM solves 

the following lattice Boltzmann equation: 

𝑓𝑖𝑗𝑘(𝑥+𝑖𝑐𝛿𝑡)(𝑦+𝑗𝑐𝛿𝑡)(𝑧+𝑘𝑐∆𝑡)(𝑡+𝛿𝑡) − 𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡 = Ω𝑖𝑗𝑘𝑥𝑦𝑧𝑡,   (1) 

where 𝑓 is the discrete particle distribution function (PDF), Ω is 

the discrete collision operator, 𝐱 = (𝑥, 𝑦, 𝑧) is the position, and 𝑡 

is the time. In this work, Eq. (1) is solved on the D3Q27 lattice which 

consists of 27 discrete velocities 𝐞 = (𝑒𝑥 , 𝑒𝑦, 𝑒𝑧) , where 𝑖 =

𝑒𝑥/𝑐 ,  𝑗 = 𝑒𝑦/𝑐 , 𝑘 = 𝑒𝑧/𝑐 , 𝑖, 𝑗, 𝑘 ∈ {1̅, 0,1}  (Miller indices with 

1̅ ≡ −1 is used), 𝑐 = 𝛿𝑥/𝛿𝑡 is the lattice speed, 𝛿𝑥 is the lattice 

spacing, and 𝛿𝑡 is the lattice time step. The square of the sound 

speed of this lattice is 𝑐𝑠
2 = 𝑐/3. 

Eq. (1) is solved by splitting it into collision and streaming steps 

as follows: 

𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡
∗ = 𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡 + Ω𝑖𝑗𝑘𝑥𝑦𝑧𝑡 ,     (2) 

𝑓(𝑥+𝑖𝑐𝛿𝑡)(𝑦+𝑗𝑐𝛿𝑡)(𝑧+𝑘𝑐∆𝑡)(𝑡+𝛿𝑡) = 𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡
∗ ,    (3) 

where 𝑓∗ is the post-collision PDFs. This is an efficient procedure 

as the collision step in Eq. (2) is evaluated locally and the streaming 

step in Eq. (3) is simply advecting the distribution functions. 

In this paper, the collision step of Eq. (2) is expressed as the multi-

relaxation of cumulants as follows: 

𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡
∗ = 𝑐𝛼𝛽𝛾 − 𝜔𝛼𝛽𝛾 (𝑐𝛼𝛽𝛾 − 𝑐𝛼𝛽𝛾

𝑒𝑞
) = 𝑐𝛼𝛽𝛾

∗ ,    (4) 

where 𝑐  denotes cumulants, 𝛼, 𝛽, 𝛾 ∈ {0,1,2}  are the order of 

the cumulants, and 𝜔  is the relaxation rates. The cumulant 

collision model has good stability for high Reynolds number 

problems due to statistical independence among cumulants [12]. 

The cumulants can be obtained from the distribution function using 

the following equation: 

𝑐𝛼𝛽𝛾 = 𝑐−(𝛼+𝛽+𝛾) 𝜕𝛼+𝛽+𝛾

𝜕𝛯𝑥
𝛼𝜕𝛯𝑦

𝛽𝜕𝛯𝑧
𝛾 𝑙𝑛  ℒ  𝑓(𝜉)  𝛯   

𝛯=0

,   (5) 

where ℒ is the Laplace transformation. 

The cumulant collision model is employed within a velocity-based 

formulation of two-phase LBM. In this formulation, the density is set 

as a constant (𝜌 = 1), which through Chapman-Enskog analysis 

leads to the following pressure-less momentum equations [14]: 

𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ ∇𝐮 = ∇ ∙ [𝜈(∇𝐮 + ∇T𝐮)],    (6) 

where the kinematic viscosity 𝜈 is related to the flowing relaxation 

rate: 
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𝜔1 = (
3𝜈𝛿𝑡

𝛿𝑥
2 +

1

2
)
−1

.     (7) 

The relaxation rates other than 𝜔1 are set to unity in this study. Eq. 

(49) is different from the INSE, therefore several terms are added. 

The following force is added to add the pressure term: 

𝐅𝑝 = −
1

𝜌
∇𝑝,     (8) 

where 𝐅𝑝 is the pressure force. The viscosity term is also corrected 

by adding the following force: 

𝐅𝜈 = −
𝜈

𝜌
∇ ∙ [𝜌(∇𝐮 + (∇𝐮)𝑇)],    (9) 

where 𝐅𝜈  is the additional viscous force. The body force due to 

gravity is calculated as: 

𝐅𝑏 = 𝜌𝐠,     (10) 

where 𝐠  is the gravity acceleration. The surface force due to 

surface tension is modelled by the density-scaled continuous 

surface force model [15]: 

𝐅𝑠 = −
2𝜌

(𝜌𝑙+𝜌ℎ)
𝜎(∇ ∙ 𝐧)∇𝜙,    (11) 

where 𝜎 is the surface tension. Finally, the forces are summed: 

𝐅 = 𝐅𝑝 + 𝐅𝜈 + 𝐅𝑏 + 𝐅𝑠 ,    (12) 

The pressure is then calculated from the PDFs as follows: 

𝑝𝑛+1 = 𝑝𝑛 + 𝜌𝑛+1𝑐𝑠
2(∑ 𝑓𝛼𝛼 − 1).   (13) 

For stability, a second order filter is applied to the pressure field 

[6]: 

𝑝̅(𝒙) = ∑ 𝑝(𝐱 + 𝐞𝛼𝛿𝑡)𝛼 .    (14) 

The filtered pressure field 𝑝̅  is then used in Eq. (51) and the 

macroscopic velocity is updated semi-implicitly: 

𝐮𝑛+1 = ∑ 𝐞𝛼𝑓𝛼𝛼 +
𝐅𝛿𝑡

2
.    (15) 

This formulation has recovered the INSE with the following pressure 

equation: 

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐𝑠

2∇ ∙ 𝒖 = 0.     (16) 

To satisfy the incompressible flow condition, the Mach number 

should be kept low: 

𝑀𝑎 =
|𝒖|

𝑐𝑠
≪ 1.     (17) 

Hereafter this formulation is referred as the unfiltered CLBM 

because the velocity field is unfiltered. 

To further enhance its stability for violent two-phase flow, the 

following adaptive filter is applied to the velocity field: 

𝐮̅𝑖,𝑗,𝑘 = 𝐮𝑖,𝑗,𝑘 +
𝛿𝑡

4𝛿𝑥2   𝑢𝑥𝑖+
1

2
,𝑗,𝑘

 𝐷
𝑖+

1

2
,𝑗,𝑘

−  𝑢𝑥𝑖−
1

2
,𝑗,𝑘

 +

 𝑢𝑦𝑖,𝑗+
1

2
,𝑘
 𝐷

𝑖,𝑗+
1

2
,𝑘

−  𝑢𝑦𝑖,𝑗−
1

2
,𝑘
 𝐷

𝑖,𝑗−
1

2
,𝑘

+  𝑢𝑧𝑖,𝑗,𝑘+
1

2

 𝐷
𝑖,𝑗,𝑘+

1

2

−

 𝑢𝑧𝑖,𝑗,𝑘−
1

2

 𝐷
𝑖,𝑗,𝑘−

1

2

 ,     (18) 

with 

𝐷
𝑖+

1

2
,𝑗,𝑘

= 𝒖𝑖,𝑗,𝑘 − 𝒖𝑖−1,𝑗,𝑘      𝑖𝑓 𝑃𝑒
𝑖+

1

2
,𝑗,𝑘

≥ 2,  (19) 

𝐷
𝑖+

1

2
,𝑗,𝑘

=  0    𝑖𝑓 𝑃𝑒
𝑖+

1

2
,𝑗,𝑘

< 2,    (20) 

𝑃𝑒
𝑖+

1

2
,𝑗,𝑘

= | 
𝑢𝑥

𝜈
|
𝑖+

1

2
,𝑗,𝑘

,    (21) 

where 𝐮 = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧)  is the velocity field, 𝐮̅  is the filtered 

velocity field 𝑖, 𝑗, 𝑘  are the cell index in 𝑥 -,  𝑦 -,  𝑧 -direction, 

respectively. This filter adds an artificial viscosity depending on the 

Peclet number 𝑃𝑒, analogously to the hybrid differencing scheme 

for advection equation [16]. Hereafter, the cumulant LBM with this 

filter is referred as filtered CLBM. 

To capture the interface dynamics, the following conservative 

phase-field lattice Boltzmann method (CPFLBM) Error! Reference 

source not found.: 

 

ℎ𝛼(𝒙 + 𝒆𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − ℎ𝛼(𝒙, 𝑡)

= −
1

𝜏𝜙
(ℎ𝛼(𝒙, 𝑡) − ℎ𝛼

𝑒𝑞(𝒙, 𝑡)), 
(22) 

 

where ℎ𝛼, 𝜏𝜙, and 𝒆𝛼 are the distribution function, the relaxation 

time for CPFLBM, and the discrete velocity set, respectively. The 

equilibrium PDFs for CPFLBM is defined as: 

 

ℎ𝛼
𝑒𝑞

= 𝑤𝛼 (𝜙 [1 +
𝒆𝛼 ∙ 𝒖

𝑐𝑠
2 ]

+
𝑀

𝑊
[1 − 4  𝜙 −

1

2
 
2

]
𝒆𝛼 ∙ 𝒏

𝑐𝑠
2 ). 

(23) 

 

The relaxation time for CPFLBM is defined as: 

 

𝜏𝜙 = 𝑀𝑐𝑠
2 +

1

2
 (24) 

 

Finally, the phase-field variable is computed as: 

 

𝜙 = ∑ℎ𝛼

𝛼

 (25) 

 

3. Results and Discussions 

3.1. 2D single bubble rising 

To validate the proposed method in simulating two-phase flows 

with high density ratio and surface tension, 2D single rising bubble 

problem is considered. The present technique is benchmarked 

against two Finite Element Method (FEM) solvers: TP2D (FEM with 

level set for interface tracking) [17] and Abels’ model (FEM with 

Cahn-Hilliard for interface tracking) [18]. The prior one is based on 

sharp-interface model whereas the later one is based on diffuse-

interface model. 

 

 

Fig. 1 Schematic of the initial condition of 2D rising bubble 
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problem. 

Fig.1 shows the problem setup, where a bubble of lighter fluid (in 

Ω𝑙 ) is surrounded by a heavier fluid (in Ωℎ ). As the simulation 

progresses, the bubble rises and its shape evolves according to the 

given physical parameters. Two cases were simulated with the 

physical parameters and dimensionless numbers are shown in 

Table . The Reynolds number 𝑅𝑒 and Eotvos number 𝐸𝑜 (the 

ratio of gravitational to surface tension forces) of this problem are 

calculated as follows: 

𝑅𝑒 =
𝜌ℎ𝐷√𝑔𝐷

𝜇ℎ
,     (26) 

𝐸𝑜 =
𝜌ℎ𝑔𝐷2

𝜎
,     (27) 

where 𝐷  is the bubble’s diameter. Case 2 is considered more 

difficult than Case 1, where more complex bubble shape with thin 

filaments is expected due to the higher density ratio and Eotvos 

numbers. 

Table 1. Physical parameters and dimensionless numbers in 
2D rising bubble problem. 

Ca
se 

𝜌ℎ 𝜌𝑙 𝜇ℎ 𝜇𝑙 𝑔 𝜎 𝑅𝑒 𝐸𝑜 𝜌ℎ

𝜌𝑙
 

𝜇ℎ

𝜇𝑙
 

1 10
00 

10
0 

1
0 

1 0.9
8 

24.
5 

3
5 

10 10 10 

2 10
00 

1 1
0 

0.
1 

0.9
8 

1.9
6 

3
5 

12
5 

10
00 

10
0 

 

 

Fig. 2 Bubble shapes at final time (top) and rise velocity 

(botttom) for Case 1 of the 2D rising bubble problem. Filtered 

CLBM with Mamax = 0.007 (red), filtered CLBM with Mamax = 0.014 

(blue). References: TP2D (solid black) and Abels (dashed black). 

The problem was solved up to the time 𝑇 = 3.0 with mesh 

resolution ℎ = 1/320  and time interval ∆𝑡 = 1/20000 . The 

reference TP2D and Abels’ models use mesh resolutions ℎ =

1/320 and ℎ = 1/128, respectively. The mesh depth is set to a 

single gridpoint with free-slip boundaries. In this setting, both 

unfiltered and filtered CLBM produces the same result as the 

Reynolds number is low. 

Fig. 2 shows the benchmark results for Case 1. The bubble 

shapes at the final time from the proposed method agrees very well 

with the references. Its rise velocity however oscillates about a 

mean value. This oscillation occurs due to compressibility effects 

where pressure waves travel with the speed proportional to the 

sound speed. The oscillation can be reduced by reducing the Mach 

number. The mean value of the rise velocity however is in good 

agreement with the references. 

Fig. 3 shows the benchmark results for Case 2. The bubble 

shapes at final time from the proposed method differs from the 

references, mainly on the bubble’s bottom and skirt shape. Better 

agreement however is obtained with the reference diffuse-interface 

model (Abels’ model). The proposed method belongs to a diffuse-

interface model where the interface spans several gridpoints. The 

difference may be also due to the difference in the calculation of 

surface tension force: the present algorithm uses the curvature from 

the phase-field function, whereas TP2D uses a level set function 

and Abels’ model uses a chemical potential model. The decrease 

of Mach number has a slight effect on the bubble shapes, however 

it reduces the oscillation of the rise velocity. 

 

Fig. 3 Bubble shapes at final time (left) and rise velocity (right) 
for Case 2 of the 2D rising bubble problem. Filtered 

CLBM with Mamax = 0.012 (red), filtered CLBM with 
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Mamax = 0.024 (blue). References: TP2D (solid black) 
and Abels (dashed black). 

3.2. 3D dam breaking on a wet floor 

In this section, our proposed method is applied to solve a violent 

two-phase flow, namely the dam breaking on a wet floor problem. 

The existance of a thin film causes additional complexity in terms of 

breaking and splashing. To examine its quality, the proposed 

method is benchmarked against the free-surface LBM by Onodera 

and Ohashi [19]. 

 

 

Fig. 4 Schematic of the initial condition of 3D dam-breaking 
problem on a wet floor. 

Fig. 4 shows the problem setup. An initial stationary water 

column with a width of 15 cm and height of 36 cm is placed touching 

the ceiling at the left-end of the domain. The height of the thin water 

layer is 1.8 cm which corresponds to a depth ratio of 0.05. The 

physical parameters of this problem are the same as in the previous 

dam-breaking problem. The reference velocity and Reynolds 

number are defined as: 

𝑢0 = √𝑔ℎ ≈ 1.83 
m

s
,    (28) 

𝑅𝑒 =
𝜌ℎ𝑢0ℎ

𝜇ℎ
≈ 6.3 × 105.    (29) 

The problem was simulated up to time 𝑇 = 1 s with a resolution 

of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 576 × 288 × 96  and a time interval ∆𝑡 =

1/80000 . The reference employs a high resolution of 1024 ×

512 × 176. 

Fig. 5 shows the evolution of the water profile obtained by the 

filtered CLBM (right) and the reference (left). As soon as the flow is 

released, a wave is developed at 0.2 s, interacts with the down-

stream water (wave-breaking) at 0.3 s, entrains air at 0.4 s, and then 

crashes against the right-end of domain at 0.5 s. The results from 

the proposed method are qualitatively in good agreements with the 

reference although they look more viscous due to the application of 

diffuse interface model and second order filter. 

Fig. 6 shows the present result at later stages which show that the 

proposed method remains stable at later stages. These results are 

unavailable in the reference [19]. During these later stages, the 

entrained air develops into many bubbles which rise up to the 

surface. The water splashing on the ceiling develops into many 

droplets which fall, break, and recombine. After it rises, the wave 

then returns with many small droplets raining on it, which could 

make the simulation using other two-phase LBMs unstable. 

 

 

 

 

Fig. 5 Evolution of water profiles in 3D dam-breaking on a wet 
floor. Reference (left) and filtered CLBM (right). 

 

Fig. 6 Evolution of water profiles in 3D dam-breaking on a thin 
film at later stages. 

3.2. 3D oblique coalescence of two-bubbles 

The 3D oblique coalescence of two bubbles problem is 

considered. The schematic of the problem is shown in Fig. 7. Two 

spherical bubbles, identical in size with diameter 𝑑 = 0.01 m, are 

arranged in oblique configuration as shown in the figure. The density 

and viscosity of the heavy phase are 𝜌ℎ = 100 kg/m3 and 𝜇ℎ =

4.63 × 10−3 kg/(m ∙ s), whereas the density and viscosity of the 

light phase are 𝜌𝑙 = 1 kg/m3 and 𝜇𝑙 = 4.63 × 10−5 kg/(m ∙ s). 

The Morton and Eotvos numbers for this case are defined as: 

 

𝑀 =
𝑔𝜇ℎ

4∆𝜌

𝜌ℎ
2𝜎3

= 2 × 10−4, (30) 
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𝐸𝑜 =
∆𝜌𝑔𝑑2

𝜎
= 16, (31) 

where 𝑔 is the gravity, 𝜎 is the surface tension, and ∆𝜌 = 𝜌ℎ −

𝜌𝑙. 

 

Fig. 7. Schematic of initial condition of the 3D oblique coalescence 

of two bubbles. 

 

The problem is solved using both unfiltered and filtered CLBM on 

a mesh of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 80 × 80 × 160 gridpoints, where 𝑁𝑥, 

𝑁𝑦 , 𝑁𝑧  are the number of mesh in 𝑥 -, 𝑦 -, 𝑧 -direction,  

respectively, and 𝑁𝑡 = 4000 time steps. 

 

Fig. 7 Bubble shapes at t=1.5 s in 3D oblique coalescence of 

two bubbles in inclined channel. (A) 90o (B) 60o (C) 45o (D) 30o. 

 

Fig. 7 shows a snapshot of bubble shapes at t=1.5 s for various 

inclinations. In our preliminary study, the proposed method capable 

to stably solve this problem and conserve the mass within the 

machine error. The bubble shape obtained in Fig. 7 (A) is in a good 

agreement with the experimental data by Brereton and Korotney 

[20]. By changing the inclination, different bubble shapes are 

obtained where the bubbles are not only interact to each other but 

also interact with the wall boundaries.  

 

4. Conclusions 

This work presents a novel filtered cumulant lattice Boltzmann 

method (filtered CLBM) which has been developed to solve violent 

two-phase flow problems, such as the dam-breaking setting. The 

proposed method employs the velocity-based formulation of the 

two-phase LBM which has better stability than the momentum-

based formulation, as the pressure update has less 

incompressibility error and the velocity update is done semi-implicitly. 

The cumulant collision model is also employed which has a good 

stability for problems with high Reynolds number. To further 

enhance the stability for the simulation of violent two-phase flows, a 

second order hybrid-like filter is also employed and can be turned 

off for non-violent flows. This filter adds artificial viscosity which 

depends on the flow Peclet number similarly to the hybrid 

differencing scheme for the advection equation. The algorithm is 

completed by the conservative phase-field lattice Boltzmann 

method (CLBM) which used for interface capturing and guarantees 

mass conservation. 

The proposed method, along with its unfiltered version, has been 

validated on two non-violent two-phase flow problems, namely the 

2D rising bubble and the 3D droplet splashing on a thin film. The 

results show good agree-ments with both computational and 

experimental references. The proposed method has however a low 

order ac-curacy due to the application of filter and therefore high 

resolution is needed for sufficient accuracy, as seen in the 3D 

droplet splashing on a thin film problem. The proposed method has 

been applied to simulate the dam-breaking which show its capacity 

in handling violent two-phase flows. The results show qualitative 

agree-ments between the proposed method and the computational 

references. A preliminary study is also conducted to simulate two-

phase flow problem in complex geometry. An oblique coalescence 

of two bubbles in inclined channel is considered. In this simulation 

the mass is conserved up to the machine error. The proposed 

method is capable to stably solve this problem. Future study may 

include the simulation of turbulent bubbly flows in inclined channel. 
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