オートエンコーダを用いたチャネル乱流の機械学習

Machine learning of turbulent channel flows using autoencoders

中村 太一,慶大,横浜市港北区日吉 3-14-1
深見 開,慶大院,横浜市港北区日吉 3-14-1
長谷川 一登,慶大院,横浜市港北区日吉 3-14-1
村田 高彬,慶大院,横浜市港北区日吉 3-14-1
難波江 佑介,慶大院,横浜市港北区日吉 3-14-1
雞波江 佑介,慶大院,横浜市港北区日吉 3-14-1
深潟 康二,慶大,横浜市港北区日吉 3-14-1, E-mail: fukagata@mech.keio.ac.jp
Taichi NAKAMURA, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522
Kai FUKAMI, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522
Takaaki MURATA, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522
Yusuke NABAE, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522

Koji FUKAGATA, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522

We use a convolutional neural network autoencoder (CNN-AE) to establish a machine learning based reduced order model (ML-ROM) for three-dimensional turbulent flow. As a preliminary exam, a minimal turbulent channel flow at $Re_{\tau} = 110$ is considered. The reconstructed flows with the CNN autoencoder show reasonable agreement with the DNS results though the accuracy falls with smaller latent vector size. We also examine the influence of pressure field as the input and output attributes. The current study suggests the possibility of extending the ML-ROM for three-dimensional turbulent flow by unifying some machine learning models which can follow a temporal evolution of latent vector obtained from the present CNN-AE.

1. 背景及び目的

強い非線形を持つ乱流現象の理解や効果的な流れの制 御手法の確立のため,近年 Reduced Order Model (ROM) が注目されている⁽¹⁾⁽²⁾.従来の ROM の手法として,固 有直交分解⁽³⁾ や動的モード分解⁽⁴⁾ などが用いられてい るが,これらの手法は線形理論に基づいたものであり,乱 流を始めとする強い非線形現象への適用を考慮した場合, 非線形性を加味した ROM の確立は重要である.

近年その第一歩として,機械学習に基づく ROM (ML-ROM) に注目が集まっている.特に,非線形な活性化関数を持つニューラルネットワークを用いることで,データから特徴量の抽出を試みるケースがいくつか報告されている.長谷川ら⁽⁵⁾は,2次元円柱周りの流れにおいて,機械学習モデルがレイノルズ数依存性を獲得することが可能であることを示した.また,Murata et al.⁽⁶⁾は,内部の可視化構造を持つ ML-ROM を用いて得た非線形モードが,PODモードに対し同じ低次元モード数においてエネルギー再現率が高いことを示した.これらの研究は,ROM における機械学習モデル内部の非線形構造の有効性を示しているが,対象としているのはいずれも2次元層流であり,適用用途が限られている.

以上の背景から、本研究では、ML-ROMの3次元乱流 場への適用の可能性を探るべく、前段階としてオートエ ンコーダ型の Convolutional neural network (CNN autoencoder)を構築し、流れの低次元化を行う. その過程 で、入力する訓練データのサイズ、および、低次元場の サイズが異なる複数のモデルを作成し、モデルに対する 統計的評価を行う.

2. 理論

2.1 訓練データ

本研究では、3次元ミニマルチャネル乱流⁽⁷⁾を対象と する.訓練データは、直接数値シミュレーション (DNS) を用いて作成する⁽⁸⁾.支配方程式は、非圧縮性の連続の

Fig. 1: Computational domain.

式およびナビエ・ストークス方程式,

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0, \qquad (1)$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{\nabla} \cdot (\boldsymbol{u}\boldsymbol{u}) = -\boldsymbol{\nabla}p + \frac{1}{\operatorname{Re}_{\tau}} \nabla^2 \boldsymbol{u}, \qquad (2)$$

である.ここで,**u**および*p*は,それぞれ速度ベクトル および圧力である.全ての物理量は動粘性係数 ν^* ,摩擦 速度 u_{τ}^* ,チャネル半幅 δ^* により無次元化されている. なお,(·)*は有次元量を表す.本研究では,摩擦レイノ ルズ数 Re_{\tau} = $u_{\tau}^*\delta^*/\nu^*$ = 110とする.計算領域は Figure 1 に示す通り, $(L_x \times L_y \times L_z) = (\pi\delta \times 2\delta \times 0.5\pi\delta)$,格 子数は $(N_x \times N_y \times N_z) = (32 \times 64 \times 32)$,時間刻み幅は $\Delta t^+ = 3.85 \times 10^{-2}$ である.チャネル壁面での境界条件 は,すべり無し条件を用いる.

本研究における,各々の瞬時場間の時間幅は $100\Delta t^+$ = 3.85 であり,10000 枚を訓練データとして使用する.また入力成分として,本研究ではチャネル乱流における主流方向速度の確率密度分布を考慮し ⁽⁹⁾,変動量 u'_i および p'を使用する.

Fig. 2: Schematic of convolutional layer.

2.2 Convolutional Neural Network(CNN)

Convolutional neural network (CNN)⁽¹⁰⁾ は,画像認 識の分野で用いられる機械学習手法の1つであり,Multilayer perceptron ⁽¹¹⁾とは異なり,入力データの局所的な 構造をフィルタを介して考慮することができ,近年流体 力学の分野でも活用され始めている⁽⁹⁾⁽¹²⁾

力学の分野でも活用され始めている⁽⁹⁾⁽¹²⁾. CNN は畳み込み層(Figure 2)とプーリング層の2種 類の層から構成される.Figure 3 にバイアスを除いた畳 み込み演算の概略図を示す.畳み込み層は局所的な特徴 を抽出する層であり,

$$u_{ijkm} = \sum_{l=0}^{L-1} \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} \sum_{r=0}^{H-1} x_{i+p,j+q,k+r,l} h_{pqrlm} + b_m, \quad (3)$$

で表される畳み込み演算を行う. 畳み込み層に入力さ れる $L_1 \times L_2 \times L_3 \times K$ のデータに対して,データ点を インデックス (i, j, k, l) で表し,点 (i, j, k, l) における値 を x_{ijkl} と表す. h_{pqrlm} は,畳み込み層における m 個の $H \times H \times H \times L$ のフィルタを表し, b_m はバイアスを表 す. u_{ijkm} は畳み込み演算により出力される 3 次元デー タの (i, j, k, m) 成分である.畳み込み演算の出力は,そ の後活性化関数 $f(\cdot)$ により,

$$z_{ijkm} = f(u_{ijkm}), \tag{4}$$

とすることで畳み込み層の出力となる.通常,単調増加 する非線形関数が活性化関数として使用される.本研究 では活性化関数として,深層学習における勾配消失問題 など,重みの更新に関する問題へのロバスト性があるこ とが知られている,Rectified linear unit (ReLU)を使用 する⁽¹³⁾.一方,プーリング層は次元の縮約および拡大 に使用され,本研究では局所部の最大値を抽出する Max pooling および,局所部の値を高次データにコピーする Upsampling を用いる.

Fig. 3: Illustration of the convolutional operation.

Case	Attributes	η_c	Latent vector
VP1	\boldsymbol{u}',p'	0.125	(16, 32, 16, 4)
VP2	$oldsymbol{u}',p'$	1.56×10^{-2}	(8, 16, 8, 4)
VP3	$oldsymbol{u}',p'$	1.95×10^{-3}	(4, 8, 4, 4)
V1	$oldsymbol{u}'$	0.125	$\left(16, 32, 16, 3\right)$
V2	$oldsymbol{u}'$	1.56×10^{-2}	(8, 16, 8, 3)
V3	$oldsymbol{u}'$	1.95×10^{-3}	(4, 8, 4, 3)

Tab. 1: The detail of each model in the present study.

2.3 CNN autoencoder

CNN autoencoder⁽¹⁴⁾ は、教師なし学習手法の1つで あり、入出力に同じデータqを用意することから、

$$\boldsymbol{q} \approx \mathcal{F}(\boldsymbol{q}; \boldsymbol{w}),$$
 (5)

と定式化される. ここに F は機械学習モデル, w は重み である. CNN autoencoder は内部でデータの次元を縮 約する構造を持っており,低次元化に用いられる部分を Encoder F_e ,高次元化に用いられる部分を Decoder F_d と呼ぶ. したがって,低次元化マップ η を用いれば,

$$\boldsymbol{\eta} = \mathcal{F}_e(\boldsymbol{q}), \quad \boldsymbol{q} = \mathcal{F}_d(\boldsymbol{\eta}),$$
 (6)

と定式化される.つまり,機械学習モデルの出力 F(q) が 入力 q と近い場合, η は高次元データ q の低次元マップ であると言える.本研究では、3 つのサイズのフィルタ を持つ Multi-scale CNN⁽¹⁵⁾ と,層が深い場合の勾配消 失や勾配発散を防ぐ skip connection⁽¹⁶⁾ を組み合わせた hybrid Skip-Connection/Multi-Scale (SC/MS) model を 機械学習モデルとして使用する.また、類似のコンセプ トは Fukami et al.⁽¹²⁾ による 2 次元乱流の機械学習超解 像に使用されており、その有用性が示されている.Figure 4 に hybrid SC/MS model の概略図を示す.入力データ は、SC モデルと MS モデルのぞれぞれで畳み込み、お よびプーリングが施され、低次元化される.低次元化さ れたデータは再び SC モデルと MS モデルのそれぞれに おいて入力と同じ次元まで拡張される.

本研究では、入力として、流れ場の速度および圧力の 変動成分 (u', v', w', p')を用いる場合(Case VP)と、速 度の変動成分のみ (u', v', w')を用いる場合(Case V)を 検討し、圧力成分が出力に与える影響を調査する.また、 これら2つのケースに対して、低次元場のサイズを3種 類、計6種類のモデルを作成する.各モデルの入力サイ ズは $(N_x, N_y, N_z, N_{\phi})$ であり、ここで N_{ϕ} は物理量の次 元数を示し、速度変動モデル(Case V1, V2, V3)では3、 圧力を含んだモデル(Case VP1, VP2, VP3)では4で ある.ケースごとの入力データの物理量、低次元場サイ ズ,高次元場に対する低次元場サイズの割合 η_c を Table 2に示す.ここで η_c は、

$$\eta_c = \frac{N_x^{\#} \times N_y^{\#} \times N_z^{\#} \times N_{\Phi}}{N_x \times N_y \times N_z \times N_{\Phi}},\tag{7}$$

と定義される. # は低次元場におけるサイズを示す.本研究では、DNSにより準備された 10000 枚の瞬時場のうち、70%を Training data、30%を Validation data として学習に用いる.また、誤差関数には L_2 ノルムを使用する.したがって、wは、

$$\boldsymbol{w} = \operatorname{argmin}_{\boldsymbol{w}} ||\boldsymbol{q}_{\text{DNS}} - \mathcal{F}(\boldsymbol{q}_{\text{DNS}}; \boldsymbol{w})||_2^2, \quad (8)$$

と表され,重み*w*に関する最適化問題に帰着する.ここで,*q*_{DNS}は DNS から得られた入出力データである.

Fig. 4: Schematic of the hybrid Skip-Connection Multi-Scale (SC/MS) model.

Fig. 5: The L_2 error norms of Case V and VP with various η_c .

3. 結果

3.1 入力における物理量の選択

まず,全てのモデルにおける,出力の速度変動成分 u_i' と入力から計算された L_2 エラーノルム $\varepsilon = ||q_{\rm ML} - q_{\rm DNS}||_2^2/||q_{\rm DNS}||_2^2$ を Figure 5 に示す.ここで Case V は,速度変動成分を用いたモデル,Case VP は,Case V に圧力変動成分が加わったモデルである.Figure 5 より,双方のモデルにおいて η_c を小さくすると誤差が大きくなることが確認できる.これは低次元 POD モードによる再構築エラーが高次元のそれよりも大きくなることと一致している⁽¹⁷⁾.また入力成分で比較すると, $\eta_c = 0.125$ の場合は Case VP の誤差が Case V よりも小さくなっているが, $\eta_c = 1.95 \times 10^{-3}$ ではこれが逆転し,Case VP の方が誤差が大きくなっている.これより η_c が大きい場合は,圧力成分 p' が速度成分の再構築に何らかの情報を与えていると考えられる.

Figure 6 に, $\eta_c = 0.125$ のモデルから出力された速 度成分の RMS 値を示す. 灰色の線は入力に用いた DNS データから算出されたものである. u_{rms}^+ で比較すると, Case V1 および VP1 で大きな差はないことが分かる. 一 方 v_{rms}^+ や w_{rms}^+ については, Case V1 よりも Case VP1 の方がやや DNS に近づいている.

以上より、 η_c が大きい場合(即ちデータサイズの圧縮 率が低い場合)は Case V よりも Case VP の方が予測性 能が高いことが確認された.しかし前述の通り、 η_c の低 下(圧縮率の上昇)に伴って、その差は小さくなってい くことが確認される.今後 η_c の低下を目指すことを考え ると、計算コストの小さい Case V を選択することが適 切と考えられる.従って、以下のモデルでは Case V を 使用する.

3.2 低次元場サイズへの依存性

次に,低次元場サイズを変えた場合の予測性能の評価 を行う.Figure 7 に, $y^+ \approx 20$ における x-z 断面の速度 の変動成分を DNS と比較した結果を示す.全体的な傾向 として, η_c が小さくなるほど,入力の DNS データから の差異が大きくなる.これは, η_c が小さすぎると畳み込 みの過程で流れの情報が過度に失われるためである.主 流方向成分 u' に注目すると, η_c の低下に伴って DNS よ りも値が低く見積もられるが, η_c に関わらず比較的 DNS データの傾向を捉えていると言える.一方,v' および w'に関しては, η_c の低下に伴って DNS データとは異なる 特徴を復元している.これはチャネル流における主流方 向成分が他の 2 つの成分に比べてより支配的な影響を持 つことが原因として挙げられる.

次に,各速度成分の RMS 値,および,主流方向エネ ルギースペクトルを η_c ごとに比較した結果を Figure 8 に示す. Figure 8(*a*), (*b*), (*c*) より, CNN autoencoder はピークの位置など, DNS データの特徴をおおまかに捉 えていることが分かる. η_c ごとに比較すると, Case V3 の場合が他の 2 ケースと比較して DNS からの誤差が大 きくなっている. また, Figure 8(*a*) において, η_c の減少 に伴い $y^+ \approx 15$ 付近が DNS よりも低く見積もられてい

Fig. 6: Root mean squared value of velocity fluctuations $u_{i,\text{rms}}^+$ with $\eta_c = 0.125$: (a) u_{rms}^+ ; (b) v_{rms}^+ ; (c) w_{rms}^+ .

Fig. 7: The comparison between the velocity fluctuations of DNS and that of CNN-AE. The decoded flow fields are shown in lower area.

Fig. 8: Turbulence statistics with DNS and Case V: (a) $u_{\rm rms}^+$; (b) $v_{\rm rms}^+$; (c) $w_{\rm rms}^+$; (d) streamwise energy spectrum $E_{uu}^+(k_x^+).$

る. これは、次元削減のために用いる Max pooling の過

程で速度情報が失われたためと考えられる. また,主流方向エネルギースペクトル $E_{uu}^+(k_x^+)$ をFig-ure 8(d) に示す. 図より,機械学習モデルによって低周 波成分は再構築される一方、高波数部分においてエネル ギーは大きく見積もられている. これは, Max pooling の過程で高周波成分が失われるためであると考えられる. また、Case V3 は、低波数の部分においても DNS との 誤差が認められる.したがって、エネルギーの観点から、 $\mathrm{SC/MS}$ モデルを用いる場合, $\eta_c = 1.95 \times 10^{-3}$ は低次元 写像場として小さいことが確認される.

結論 **4**.

本研究では、オートエンコーダ型 CNN の作成を行い、 3 次元乱流のための機械学習縮約モデル作成の第一歩と して、3 次元ミニマルチャネル乱流の低次元化を行った. 高次元場に対する低次元場サイズの割合が大きい場合は DNSデータと統計量がよく一致し、速度のみを入力とするよりも圧力と速度の両方を入力する方が予測性能が高 いことが示された.一方,高次元場に対する低次元場サイ ズの割合が小さい場合は予測が難しく、入力に圧力を含め ても予測性能はほとんど変わらないことが分かった. 今後 は、モデルの構造を改良し、低次元場のサイズを小さくした場合でも高い予測性能を示す CNN autoencoder の構築 を行う. また, 構築された CNN autoencoder により低次 元化された流れ場を Long short-term memory (LSTM) に入力することで、3次元乱流のための ML-ROM を構 築する.

参考文献

- (1) Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., and Ukeiley, L. S., "Modal analysis of fluid flows: An overview," AIAA J., Vol. 55, No. 12, (2017), pp. 4013–4041.
- (2) Taira, K., Hemati, M. S., Brunton, S. L., Sun, Y.,

Duraisamy, K., Bagheri, S., Dawson, S., Yeh, C. A., "Modal analysis of fluid flows: Applications and outlook," *AIAA J.*, (available only online) (2019).

- (3) Lumley, J. L., "The structure of inhomogeneous turbulent flows, in atmospheric turbulence and wave propagation," eds. Yaglom, A. M. and Tatarski, V. I., Moscow, Nauka (1967), pp. 166– 178L
- (4) Schmid, P., "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., Vol. 656 (2010), pp. 5–28.
- (5) 長谷川, 深見, 村田, 深潟, "機械学習を用いた円柱 周り流れのレイノルズ数依存性の予測," ながれ 38 (2019), pp. 81–84.
- (6) Murata, T., Fukami, K., Fukagata, K., "Nonlinear mode decomposition with convolutional neural networks for fluid dynamics," *J. Fluid Mech.*, (accepted) (2019).
- (7) Jiménez, J., and Moin, P., "The minimal flow unit in near-wall turbulence," J. Fluid Mech., Vol. 225 (1991), pp. 213–240.
- (8) Fukagata, K., Kasagi, N., and Koumoutsakos, P., "A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces," *Phys. Fluids*, Vol. 18 (2006), 051703.
- (9) Fukami, K., Nabae, Y., Kawai, K., and Fukagata, K., "Synthetic turbulent inflow generator using machine learning," *Phys. Rev. Fluids*, Vol. 4 (2019), 064603.
- (10) LeCun, Y. A., Bottou, L., Bengio, Y. and Haffner, P., "Gradient-based learning applied to document recognition," *Proc. IEEE*, Vol. 86, No. 11 (1998), pp. 2278–2324.
- (11) D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by backpropagation errors," *Nature*, Vol. 323, No. 533 (1986), pp. 533–536.
- (12) Fukami, K., Fukagata, K., and Taira, K., "Superresolution reconstruction of turbulent flows with machine learning," J. Fluid Mech., Vol. 870 (2019), pp. 106–120.
- (13) Nair, V. and Hinton, E. G., "Rectified linear units improve restricted Boltzmann machines," In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel (2010), pp. 807– 814.
- (14) Hinton, G. E., and Salakhutdinov., "Reducing the dimensionality of data with neural networks," *Sci*ence, Vol. 313 (2006), pp. 504–507.
- (15) Du, X., Qu, X., He, Y., and Guo, D. "Single image super-resolution based on multi-scale competitive convolutional neural network," *Sensors*, Vol. 18, No. 789, (2018), pp. 1–17.
- (16) He, K., Zhang, X., Ren, S., and Sun, J. "Deep residual learning for image recognition", In Proceedings of CVPR, (2016) pp. 770–778.
- (17) Alfonsi, G. and Primavera, L., "The structure of turbulent boundary layers in the wallregion of plane channel flow," *Proc. R. Soc. A*, Vol. 463, No. 2078 (2007), pp. 593–612.