温度によって変化する粘性を考慮した溶岩流の数値シミュレーション

Simulation of a Lava Flow with Viscosity Varying by Temperature

 曾根 宏幸,日大院,東京都千代田区神田駿河台 1-8-14, E-mail: cshi19012@g.nihon-u.ac.jp
 小紫 誠子,日大理工,東京都千代田区神田駿河台 1-8-14, E-mail: satoko@math.cst.nihon-u.ac.jp
 Hiroyuki Sone, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308
 Satoko Komurasaki, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308

In order to investigate the mechanism of the shape formation of a volcano, lava flows having different viscosities are simulated solving the incompressible Navier-Stokes equations, the energy equation and a convection diffusion equation by a finite difference method. It is well known that the basic shape of a volcano is characterized by the lava viscosity. To handle the highly viscous lava flow which is usually difficult to compute, an implicit method is introduced. The computational results show that the lava flows of the various viscosities can be handled by our current approach. While the low viscous lava quickly spreads on the surface, the high viscous lava changes its shape very slowly.

1. 緒論

火山活動の調査や、火山噴火による災害の被害予想、溶岩流に よる地形の変遷等、溶岩流に関する研究は広く行われている.実 験においては現実の溶岩を用いるのは困難であるため、代わりと して似たような性質を持つ物質(一般的にチョコレート、マヨネ ーズ、歯磨き粉等)が使われることも多い.ところで、火山の基本 的な形状を特徴づける大きな要因は溶岩の粘性であると考えられ ている.溶岩の粘性は温度によって大きく変化するため、火山の 形状形成過程においては、時間と共に冷却されて粘性が増大する 効果も考慮しなければならない.また、溶岩は冷却されて最終的 には固体となるが、流体から固体への遷移も火山の形状決定にお いて重要な因子となっていると考えられる.

本研究では、粘性の変化が創る火山の形状パターンについて解 析を行うため、簡単なモデルを用いた溶岩流の数値シミュレーシ ョンを試みる.現実には溶岩流はビンガム流体という非ニュート ン流体であるが、簡単のためここではニュートン流体として扱い、 種々の異なる粘性流体の流れを計算する.

2. 計算方法

(1) 支配方程式

本研究では、溶岩流を簡単なモデルで取り扱い、数値シミュレ ーションを行う.溶岩と空気の表現のために、非常に小さな拡散 係数をもつある移流拡散物質 S を導入する. そして、S の濃度に よって流体に比重差を与え、比重の大きい流体を溶岩、小さい方 を空気と考えることにする.式(1)~(4)は非圧縮性ナヴィエ・ス トークス方程式、式(5)はエネルギー方程式で T は温度を表し、 式(6)は S の移流拡散方程式である.温度差ならびに S による比 重差から発生する浮力については式(7)に示す通りである. Prは プラントル数、Sc はシュミット数 (動粘度/Sの拡散係数)であ り、それぞれ T と S の拡散のし難さを表している.

$$\frac{1}{\rho_{0}} \left(\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} \right) + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) = 0 \dots (1)$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
$$= -\frac{\partial p}{\partial x} + \left(\frac{\partial}{\partial x} \frac{1}{Re} \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} \frac{1}{Re} \frac{\partial u}{\partial y} + \frac{\partial}{\partial z} \frac{1}{Re} \frac{\partial u}{\partial z} \right) \dots (2)$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$

$$\begin{aligned} &= -\frac{\partial p}{\partial y} + \left(\frac{\partial}{\partial x}\frac{1}{Re}\frac{\partial v}{\partial x} + \frac{\partial}{\partial y}\frac{1}{Re}\frac{\partial v}{\partial y} + \frac{\partial}{\partial z}\frac{1}{Re}\frac{\partial v}{\partial z}\right) \\ &\quad -\frac{\rho - \rho_0}{\rho_0}g \quad \dots (3) \\ &\quad \frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z} \\ &= -\frac{\partial p}{\partial z} + \left(\frac{\partial}{\partial x}\frac{1}{Re}\frac{\partial w}{\partial x} + \frac{\partial}{\partial y}\frac{1}{Re}\frac{\partial w}{\partial y} + \frac{\partial}{\partial z}\frac{1}{Re}\frac{\partial w}{\partial z}\right) \quad \dots (4) \\ &\quad \frac{\partial T}{\partial t} + u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + w\frac{\partial T}{\partial z} \\ &= \frac{\partial}{\partial x}\frac{1}{Re \cdot Pr}\frac{\partial T}{\partial x} + \frac{\partial}{\partial y}\frac{1}{Re \cdot Pr}\frac{\partial T}{\partial y} + \frac{\partial}{\partial z}\frac{1}{Re \cdot Pr}\frac{\partial T}{\partial z} \quad \dots (5) \\ &\quad \frac{\partial S}{\partial t} + u\frac{\partial S}{\partial x} + v\frac{\partial S}{\partial y} + w\frac{\partial S}{\partial z} \\ &= \frac{\partial}{\partial x}\frac{1}{Re \cdot Sc}\frac{\partial S}{\partial x} + \frac{\partial}{\partial y}\frac{1}{Re \cdot Sc}\frac{\partial S}{\partial y} + \frac{\partial}{\partial z}\frac{1}{Re \cdot Sc}\frac{\partial S}{\partial z} \quad \dots (6) \\ \frac{\rho - \rho_0}{\rho_0}g &= -\beta_T g(T - T_0) + \beta_S g(S - S_0) \dots (7) \qquad (\not P D) \\ &\quad T: \exists g \quad S: \ddot{R} \\ &\quad \beta_T: \dot{K} \bar{\eta} \\ \hline \end{pmatrix} \end{aligned}$$

(2) 初期条件·境界条件

計算領域としては, Fig.1 のように 8.0×2.0×8.0 の直方体形 状の計算領域を考え, 80×30×80 の不等間隔格子で分割する. 底面中心に直径0.4の溶岩流噴出口を設置し,この付近の格子をより細かく分割する. (Fig.2).

境界条件として, 溶岩噴出口において S = 1.0 (溶岩), T = 1.0 を与える. また, 溶岩噴出速度として Fig. 3 に示すよう な分布で v を与える. その他の境界については, 底面はノンス リップ, 天井はフリースリップ, 側面は速度勾配 0としている. 溶岩噴出口以外は初期条件としてS = 0 (空気), T = 0とする.

Fig. 3. Computational domain. Lava erupts from a vent colored red in the bottom.

(3) 溶岩流モデルにおけるパラメータの数値

空気と溶岩の各々の領域に対して, Table 1 のように各パラメー タを設定する. 各時間ステップでこれらのパラメータを設定す る. *S* の拡散し難さを表すシュミット数 *Sc* は十分大きくと る.

	Air	Lava
Re	1000	1000~1
Pr	0.7	10
$\frac{\rho}{\rho_0}$	1	10
Sc		10 ⁸

Table 1 Parameters for air and lava flows

(4) 数值解析法

支配方程式は差分法を用いて離散化し、フラクショナルステッ プ法を使用して式を解く. 空間微分は2次精度中心差分を用い、 非線形移流項は3次精度上流差分(KKスキーム)により近似する. 時間積分においては、本研究では粘性の高い溶岩流を扱うため、 陰解法を用いる.

3. 計算結果

噴出する溶岩の粘性による溶岩流の流れ場を比較するため, Table 2 に示す Case A~D のように溶岩の粘性に相当するレイノル ズ数 Re を変化させた4ケースについて解析を行う.

Table 2	Reynolds	number of	ofin	each case

Case	Re
А	1000
В	20
С	1
D	0.1

Figs.4~7 は、それぞれ Case A~D における溶岩噴出開始時からの溶岩流の時間発展の様子を示している.時間 time は無次元時間 である. S = 0.5の等値面を空気と溶岩流の界面と考え、この等値 面によって溶岩流を可視化している.

最も粘性の低い Case A(Fig.4)では、溶岩流は噴出後すぐに底面 上を放射状に広がり、次に粘性の低い Case B (Fig.5)においても、 同様に底面上を広がっていくが、Case A に比べて溶岩の厚みが増 し、底面上を広がる速さも遅い、溶岩の形状が丸みを帯びている ことからも Case A より粘性が高い流れとなっている様子が確認で きる.

溶岩流の粘性が高い Case C (Fig.6), Case D (Fig.7) では, 噴出 ロで与えられる噴出速度に基づく上方向への運動が支配的となり, 高い粘性の影響を受けて横への広がりが抑制され,前の2つのケ ースとは大きく異なった流れ方となっていることが確認できる.

なお,ここで示した計算結果の可視化の図は,(株)計算流体力 学研究所の流体専用可視化ソフトウェアClef3Dを用いて作成して いる.

4. 結論

粘性の異なる溶岩流について、簡単なモデルを用いた数値シミ ュレーションを行い、噴出口から噴出する溶岩流の流れについて 比較を行った.その結果、粘性が低い場合には噴出後に底面上を 溶岩流が広がっていく様子が見られたが、溶岩流の粘性が高い場 合には横への広がりが抑制され、流れが大きく異なる様子が示さ れた.

参考文献

- (1) 河村哲也 他,"環境流体シミュレーション,"朝倉書店 (2001).
- (2) 桑原邦郎・河村哲也,"流体計算と差分法"朝倉書店 (2005).
- (3) 河村哲也,"数値シミュレーション入門" サイエンス社(2006)
- (4) 水山高久 他, "溶岩流のシミュレーションと対策手法" 新砂防 Vol. 42, No. 4 (1989).
- (5) 山元孝広他、"個別要素法を用いた中-高粘性マグマの噴出 シミュレーション" 火山 Vol. 58, No. 4 (2003), pp. 551-555.

Fig. 4. Time development of the lava flow at Reynolds number of 1000 (Case A).

time = 0.00

1312.632

Fig. 5. Time development of the lava flow at Reynolds number of 20 (Case B).

Fig. 6. Time development of the lava flow at Reynolds number of 1 (Case C).

Fig. 7. Time development of the lava flow at Reynolds number of 0.1 (Case D).