
October 28, 2019 12:51

The 33rd Computational Fluid Dynamics Symposium
E04-3

A proposal of communication-hiding pipelined BiCGSafe algorithm and

its application to GPU-based numerical simulation of blood flow

© HUYNH Quang Huy Viet
SUITO Hiroshi

Advanced Institute for Materials Research, Tohoku University
E-mail: {hqhviet, hiroshi.suito}@tohoku.ac.jp

Recently, the new variants of the BiCGStab algorithm with hiding communication latency of computing inner

products by overlapping inner-product computations with a matrix-vector computation have been proposed by
Cools and Vanroose. On parallel computers, this method can gain higher scalability property than the stan-

dard BiCGStab method. Among generalized algorithms of the BiCGStab method such as GPBiCG, BiCGSafe,
BiCGStar-plus, GPBiCG variant 1, 2, 3, 4, BiCGSafe is an algorithm with good convergence behaviors. In this

paper, similar to the work of Cools and Vanroose, we propose a variant of BiCGSafe named Pipelined BiCGSafe

that hides communication latency. To verify the effectiveness of the proposed algorithm for real problems, we
apply it to blood flow simulation.

1. Introduction

Simulation of blood flow by using numerical meth-
ods has become an emerging research area. The un-
derstanding of flow patterns of blood flow is useful in
the prevention, diagnosis, and treatment of cardiovas-
cular disease - a class of diseases involving narrowed or
blocked blood vessels that can cause a range of heart
diseases such as check pain, heart attack. In the nu-
merical simulation of blood flow, the discretization of
the Navier-Stokes equations (NSE) by finite element
methods leads to a large scale system of linear equa-
tions. Solving systems of linear equations is also a cen-
tral problem for many algorithms in scientific and engi-
neering computations. One of the widely used methods
for solving linear equation systems is the BiCGStab (7)

iterative algorithm, which uses an initial solution and
creates a sequence of improved approximate solutions.
The BiCGStab algorithm is built from three basic oper-
ations: inner-product, linear combination (the addition
of a scalar multiple of one vector to another vector), and
matrix-vector product. In real-life applications, it is es-
sential to speed up the solution process of large-scale lin-
ear equation systems. In the parallel implementation of
the BiCGStab algorithm, one main problem that causes
delays to the whole process is the inner product oper-
ation, which requires a global synchronization phrase
for one global communication operation to collect the
scalar partial sums in each processor to one processor,
and one global communication operation for distribut-
ing the result to all processors. Time for inner product
computation will dominate the time of the whole algo-
rithm as the number of processors increases. Recently,
the new variants of the BiCGStab algorithm with hiding
communication latency of computing inner products by
overlapping inner-product computations with a matrix-
vector computation have been proposed by Cools and
Vanroose (1). On parallel computers, these methods
can gain higher scalability property than the standard
BiCGStab algorithm. Among generalized algorithms
of BiCGStab method such as GPBiCG (5), BiCGSafe
(2)(3), BiCGStar-Plus (4), GPBiCG variant 1, 2, 3, 4
(6), BiCGSafe is the algorithm with good convergence
behaviors. In this paper, similar to the work of Cools
and Vanroose, we propose a variant of BiCGSafe named
Pipelined BiCGSafe that hides communication latency.
GPU (graphics processing units) computing has re-
cently been recognized as a powerful platform to achieve
high performance. For the simulation of blood flow, we

have developed a GPU-based NSE solver (9) founded on
the stabilized finite element method (8). To verify the
effectiveness of the proposed algorithm for real prob-
lems, we apply it to a GPU-based simulation of blood
flow in the aorta of the human body.

2. Pipelined BiCGSafe Algorithm

Algorithm 1 ssBiCGSafe2 (3)

1: Let x0 is an initial guess,
2: Compute r0 = b−Ax0,
3: Choose r∗0 such that (r∗0, r0) 6= 0, e.g., r∗0 = r0,
4: for i = 0, 1, ... do
5: if ||ri||/||r0|| ≤ ε stop,
6: Compute Ari,
7: Define the scalar variables for the inner products:
8: ai := (Ari,Ari), bi := (yi,yi), ci := (Ari,yi),
9: di := (Ari, ri), ei := (yi, ri), fi := (r∗0, ri),

10: gi := (r∗0,Ari), hi := (r∗0, ti−1),
11: if i = 0 then
12: βi = 0,
13: αi = fi/gi,
14: ζi = di/ai,
15: ηi = 0,
16: else
17: βi = (αi−1fi)/(ζi−1fi−1),
18: αi = fi/(gi + βihi),
19: ζi = (bidi − ciei)/(aibi − c2i),
20: ηi = (aiei − cidi)/(aibi − c2i),
21: end if
22: pi = ri + βi(pi−1 − ui−1),
23: Api = Ari + βiti−1,
24: ui = ζiApi + ηi(yi + βiui−1),
25: Compute Aui,
26: ti = Api −Aui,
27: zi = ζiri + ηizi−1 − αiui,
28: yi+1 = ζiAri + ηiyi − αiAui,
29: xi+1 = xi + αipi + zi,
30: ri+1 = ri − αiApi − yi+1,
31: end for

1 Copyright c© 2019 by JSFM

The 33rd Computational Fluid Dynamics Symposium
E04-3

GPBiCG and BiCGSafe are two typical algorithms
that can be considered as generalized algorithms of
BiCGStab. Based on the strategy of constructing asso-
ciated residuals, BiCGSafe has better convergence prop-
erties. There are two improved variants of BiCGSafe
with single synchronization: ssBiCGSafe1 and ss-
BiCGSafe2 (3). The main difference between the two
is the use of a transposed matrix: ssBiCGSafe1 uses,
but ssBiCGSafe2 does not. Based on ssBiCGSafe2, we
have developed a variant named Pipelined BiCGSafe
that hides communication latency as follows.

Algorithm 2 Pipelined BiCGSafe

1: Let x0 is an initial guess,
2: Compute r0 = b−Ax0,
3: Choose r∗0 such that (r∗0, r0) 6= 0, e.g., r∗0 = r0,
4: for i = 0, 1, ... do
5: if ||ri||/||r0|| ≤ ε stop,
6: Define ai := (si, si), bi := (yi,yi), ci := (si,yi),

di := (si, ri),
7: Define ei := (yi, ri), fi := (r∗0, ri), gi := (r∗0, si),

hi := (r∗0, ti−1),
8: if i = 0 then
9: βi = 0,

10: αi = fi/gi,
11: ζi = di/ai,
12: ηi = 0,
13: else
14: βi = (αi−1fi)/(ζi−1fi−1),
15: αi = fi/(gi + βihi),
16: ζi = (bidi − ciei)/(aibi − c2i),
17: ηi = (aiei − cidi)/(aibi − c2i),
18: end if
19: Compute Asi,
20: pi = ri + βi(pi−1 − ui−1),
21: oi = si + βiti−1,
22: qi = Asi + βivi−1,
23: ui = ζioi + ηi(yi + βiui−1),
24: wi = ζiqi + ηi(gi + βiwi−1),
25: Compute Awi,
26: ti = oi −wi,
27: vi = qi −Awi,
28: zi = ζiri + ηizi−1 − αiui,
29: yi+1 = ζisi + ηiyi − αiwi,
30: gi+1 = ζiAsi + ηigi − αiAwi,
31: xi+1 = xi + αipi + zi,
32: ri+1 = ri − αioi − yi+1,
33: si+1 = si − αiqi − gi+1,
34: end for

Algorithm 2 is mathematically equivalent to Algo-
rithm 1 in the exact arithmetic. However, the strategy
of hiding communication can be applied to Algorithm 2,
but not to Algorithm 1. In Algorithm 2, the inner prod-
uct computation (lines 6 through 18) can be performed
simultaneously or in a manner that overlaps with the
matrix-vector computation (line 19). A detailed deriva-
tion of Algorithm 2 will be presented in a future paper.

3. Stabilized Finite Element Method
We consider the following dimensionless form of the

Navier-Stokes equations in a spatial domain Ω ⊂ R3:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
in Ω,

(1)

∂ui
∂xi

= 0 in Ω.

(2)

Here, we adopt the summation convention on repeated
indices that have values 1, 2, and 3. The x, y, z axes
in the Cartesian coordinate system are designated as
xi, i = 1, 2, 3. Here, ui represents the component of the
velocity vector field u in the ith dimension, p stands for
the scalar pressure field, and Re denotes the Reynolds
number.

Let us discretize the spatial domain Ω by elements
Ωe, e = 1, 2..., nel. Let Su,Vu be the trial and test func-
tion spaces for velocity and Sp,Vp (Vp = Sp) be trial and
test function spaces for pressure. The stabilized finite
element formulation of the equations (1)-(2) with the
SUPG/PSPG stabilization terms can be expressed as
follows (8): Find u ∈ Su and p ∈ Sp such that ∀w ∈ Vu
and ∀q ∈ Vp:

∫
Ω

wi

(
∂ui
∂t

+ ūj
∂ui
∂xj

)
dΩ−

∫
Ω

∂wi

∂xi
pdΩ

+

∫
Ω

1

Re

∂wi

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
dΩ

+

nel∑
e=1

∫
Ωe

τ ūk
∂wi

∂xk

(
∂ui
∂t

+ ūj
∂ui
∂xj

+
∂p

∂xi

)
dΩ = 0,

(3)∫
Ω

q
∂ui
∂xi

dΩ +

nel∑
e=1

∫
Ωe

τ
∂q

∂xi

(
∂ui
∂t

+ ūj
∂ui
∂xj

+
∂p

∂xi

)
dΩ = 0,

(4)

where τ is the SUPG/PSPG stabilization parameter.
The formula for calculating the coefficient τ is detailed
in the paper (8).
4. Numerical Results

The discretization of the Navier-Stokes equation by
stabilized finite element method leads to a large and
sparse non-symmetric system of linear equations. This
linear equation system is solved by using by the pro-
posed BiCGSafe algorithm in which the inner-product
computations are hidden.

To implement the proposed algorithm on the GPU
platform, we used the Nvidia’s GPU linear algebra li-
braries cuSPARSE (10) and cuBLAS (11) to implement
four basic vector operations of the algorithm: SpMV
(sparse matrix-vector product,), DOT (inner product),
AXPY (add a multiple of one vector to another),and
SCAL (scaling a vector by a constant).

The computational conditions are as follows:

• Intel(R) Xeon(R) Gold 6130 CPU, 2.10GHz

• GPU NVIDIA Tesla P4, 48 GB System Memory.

• NVIDIA’s CUDA Compiler (NVCC), GCC 5.4,

2 Copyright c© 2019 by JSFM

The 33rd Computational Fluid Dynamics Symposium
E04-3

Fig. 1: Triangle surface and tetrahedral volume meshes

• Cuda 9.1, double precision,

• Compiler options: -O3 -std=c++14

• Stopping criteria: ||rn||/||b|| < 10−9.

The open-source software Gmsh (12) is used to gen-
erate the 3D finite element mesh shown in Fig. 1. The
inlet velocity boundary condition is time-dependent as
shown in Fig. 2. The time step is set to start at 0s and
finish at 0.5s with a time interval of 0.002s.

Fig. 2: Inlet velocity profile and the result flow pattern

The computation was performed successfully on GPU
and CPU. Table 1 shows a speed-up ratio and execution
times of GPU and CPU computations. GPU execution
is significantly faster than CPU execution.

Tab. 1: Speed-up ratios and execution times

Mesh Size GPU CPU Speed
#Node #Element Time Time Up

32242 173439 4201s 27729 s 6.6

Although the above numerical results show the ef-
fectiveness of the proposed algorithm, the possibility of
simultaneous calculation of the inner products and the
matrix-vector product has not been considered at the
current implementation stage. This will be carried out
in the near future.
5. Conclusions

We propose the Pipelined BiCGSafe algorithm that
can hide the latency of inner product computation by
matrix-vector computation, and show its application in
GPU-based simulation of blood flow in the aorta of the
human body. In future work, we will further improve
the current implementation by exploring the possibility
of simultaneous computation of the inner products and
the matrix-vector product.
6. Acknowledgment

This work was supported by JST CREST Grant
Number JPMJCR15D1, Japan.

REFERENCES

(1) S. Cools, W. Vanroose, The communication-hiding
pipelined BiCGStab method for the parallel solution
of large unsymmetric linear systems. Parallel Com-
put. 65, 1—20 (2017).

(2) S. Fujino, M. Fujiwara, M. Yoshida, BiCGSafe
method based on minimization of associate resid-
ual, Transactions of the Japan Society for Computa-
tional Engineering and Science, 2005, Volume 2005.

(3) S. Fujino, K. Iwasato, An Estimation of Single-
Synchronized Krylov Subspace Methods with Hy-
brid Parallelization, Proceedings of the World
Congress on Engineering 2015 Vol I.

(4) S. Fujino and K. Murakami, A Parallel Vari-
ant of BiCGStar-Plus Method Reduced to Sin-
gle Global Synchronization, AsiaSim, pp.325–332,
Springer Verlag, Berlin, 2013.

(5) S.L. Zhang, GPBi-CG, Generalized product-type
methods preconditionings based on BiCG for solv-
ing nonsymmetric linear systems, SIAM J. Sci. Com-
put., pp.537–551, 1997.

(6) K. Abe, and G.L.G. Sleijpen, Solving Linear Equa-
tions with a Stabilized GPBiCG Method, Applied
Numerical Math., 67 (2013) 4–16.

(7) H.A. van der Vorst, Bi-CGSTAB: A fast and
smoothly converging variant of Bi-CG for the so-
lution of nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput., 13 (1992), 631–644.

(8) T.E. Tezduyar, Stabilized finite element formu-
lations for incompressible flow computations, Ad-
vances in Applied Mechanics 28 (1992) 1–44.

(9) V.Q.H. Huynh, H. Suito, Multi-GPU Implementa-
tion of a Parallel Solver for Incompressible Navier-
Stokes Equations Discretized by Stabilized Finite
Element Formulations, RIMS Kokyuroku, Vol. 2037
(2016), pp. 149-152.

(10) CuSPARSE, https://developer.nvidia.com/
cusparse.

(11) CuBLAS, https://developer.nvidia.com/
cublas.

(12) Gmsh, http://gmsh.info/

3 Copyright c© 2019 by JSFM

