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In this study, the dynamic of turbulent bubbly flows of water-air system with high density and viscosity ratio 

are investigated using a direct numerical simulation. Recently, we have developed a cumulant lattice 

Boltzmann method for two-phase flow, which was able to simulate two-phase flows with high density ratio and 

Reynolds number. The method is extended by incorporating a multi-phase field model to be able to simulate 

the turbulent bubbly flows. The method was first validated for turbulent bubbly downflows with the reference 

in low density ratio settings. The turbulent bubbly downflows of water-air system was then simulated and 

discussed. 

 

 

1. Introduction 

Turbulent bubbly flows are of great importance in industrial 

applications, such as power plants and chemical process plants. To 

understand the dynamic of these flows is important for the design 

and operation of the plants. A direct numerical simulations have 

been employed in a number of studies to understand these flows, 

however, with low density and viscosity ratio settings due to 

numerical limitations (1, 2). The present study aims to overcome 

these limitations and simulate a real settings of water-air system 

with high density and viscosity ratio. 

To simulate the fluid motion, lattice Boltzmann method (LBM) is 

employed in this study as it is efficient for massive parallel 

computation (3). LBM has been widely employed and is continually 

being extended for studying two-phase flows (4, 5). Recently, we have 

developed a cumulant lattice Boltzmann method for two-phase 

flows, which was able to simulate two-phase flows with high density 

ratio and Reynolds number (6). 

In this study, we extend our previous cumulant LBM for two-

phase flows by incorporating a multi-phase field model and show 

that it is suited in studying the turbulent bubbly flows. Both turbulent 

bubbly downflows of low density ratio and water-air system has 

been simulated and the results are discussed herein. 

 

2. Numerical methods 

The CLBM solves the following lattice Boltzmann equations: 

𝑓𝑖𝑗𝑘(𝑥+𝑖𝑐𝛿𝑡)(𝑦+𝑗𝑐𝛿𝑡)(𝑧+𝑘𝑐∆𝑡)(𝑡+𝛿𝑡) − 𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡 = Ω𝑖𝑗𝑘𝑥𝑦𝑧𝑡,    (1) 

where 𝑓 is the discrete particle distribution function (PDF), Ω is 

the discrete collision operator, 𝐱 = (𝑥, 𝑦, 𝑧) is the position, and 𝑡 

is the time (7). Eq. (1) is solved on the D3Q27 lattice which consists 

of 27 discrete velocities 𝐞 = (𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧) , where 𝑖 = 𝑒𝑥/𝑐 ,  𝑗 =

𝑒𝑦/𝑐 , 𝑘 = 𝑒𝑧/𝑐 , 𝑖, 𝑗, 𝑘 ∈ {1̅, 0,1} (Miller indices with 1̅ ≡ −1 is 

used), 𝑐 = 𝛿𝑥/𝛿𝑡 is the lattice speed, 𝛿𝑥 is the lattice spacing, 

and 𝛿𝑡 is the lattice time step. 

Eq. (1) is split it into collision and streaming steps as follows: 

𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡
∗ = 𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡 + Ω𝑖𝑗𝑘𝑥𝑦𝑧𝑡 ,              (2) 

𝑓(𝑥+𝑖𝑐𝛿𝑡)(𝑦+𝑗𝑐𝛿𝑡)(𝑧+𝑘𝑐∆𝑡)(𝑡+𝛿𝑡) = 𝑓𝑖𝑗𝑘𝑥𝑦𝑧𝑡
∗ ,         (3) 

where 𝑓∗ is the post-collision PDFs. The collision step of Eq. (2) is 

then solved in cumulant space as follows: 

𝑐𝛼𝛽𝛾
∗ = 𝑐𝛼𝛽𝛾 − 𝜔𝛼𝛽𝛾 (𝑐𝛼𝛽𝛾 − 𝑐𝛼𝛽𝛾

𝑒𝑞
),           (4) 

where 𝑐  denotes cumulants, 𝛼, 𝛽, 𝛾 ∈ {0,1,2}  are the order of 

the cumulants, and 𝜔 is the relaxation rates. The cumulants can 

be obtained from the distribution function using the following 

transformation: 

𝑐𝛼𝛽𝛾 = 𝑐−(𝛼+𝛽+𝛾) 𝜕𝛼+𝛽+𝛾

𝜕𝛯𝑥
𝛼𝜕𝛯𝑦

𝛽𝜕𝛯𝑧
𝛾 𝑙𝑛 (ℒ [𝑓(𝜉)] (𝛯))|

𝛯=0

,  (5) 

where ℒ is the Laplace transformation. 

The cumulant collision model is employed within a velocity-based 

formulation of two-phase LBM where the zeroth order moment is 

set as to unity. Without any corrections, the formulation will recover 

the following pressure-less momentum equations: 

𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ ∇𝐮 = ∇ ∙ [𝜈(∇𝐮 + ∇T𝐮)].           (6) 

To obtain correct momentum equations, several terms are added 

as external forces: 

𝐅 = 𝐅𝑝 + 𝐅𝜈 + 𝐅𝑏 + 𝐅𝑠 ,               (7) 

𝐅𝑝 = −∇𝑝,                    (8) 

𝐅𝜈 = 𝜈[∇𝐮 + (∇𝐮)𝑇] ∙ ∇𝜌,              (9) 

𝐅𝑏 = 𝜌𝐠,                     (10) 

𝐅𝑠 = −𝜎(∇ ∙ 𝐧)∇𝜙,                (11) 

where 𝐅𝑝, 𝐅𝜈, 𝐅𝑏, and 𝐅𝑠 are the pressure, viscous, body, and 

surface forces, respectively; 𝐠 is the gravity acceleration and 𝜎 is 

the surface tension. The kinematic viscosity 𝜈  is related to the 

following hydrodynamic relaxation rate: 

𝜔ℎ = (
3𝜈𝛿𝑡

𝛿𝑥
2 +

1

2
)

−1
.                   (12) 

The relaxation rates other than 𝜔ℎ are set to unity in this study. 

We updated the pressure and momentum iteratively for each 

time step as follows: 

𝑝∗,𝑖+1 = 𝑝𝑖 + 𝜌𝑐𝑠
2∇ ∙ 𝐮∗,𝑖 +

𝛼

𝑁
∇2𝑝𝑖 ,            (13) 

𝐮∗,𝑖+1 = ∑ 𝐞𝛼𝑓𝛼𝛼 +
1

2
𝐅∗,𝒊+𝟏𝛿𝑡,              (14) 

where the superscript 𝑖 indicates the current iteration step, N is the 

number of iterations, and 𝛼  is the diffusivity of the Laplacian of 
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pressure. After the iterations finish (currently five iterations), the 

pressure and velocity at the advanced time step are set as: 

𝑝𝑛+1 = 𝑝∗,𝑁,                       (15) 

𝐮𝑛+1 = 𝐮∗,𝑁.                       (16) 

To satisfy the incompressible flow condition, the Mach number 

should be kept low: 

𝑀𝑎 =
|𝒖|

𝑐𝑠
≪ 1.                     (17) 

To capture the interface dynamics for many bubbles without 

numerical bubble coalescing, the following multi-phase-field model 

is employed: 

∂𝜙𝑖

∂t
+ ∇ ∙ (𝜙𝑖𝐮) = 𝑀 [∇ ∙ {∇𝜙𝑖 −

𝜙𝑖(1−𝜙𝑖)𝒏𝒊

𝑊
}] −

𝜙𝑖
2

∑ 𝜙𝑗
2𝑁

𝑗=1

∑ [∇ ∙ {∇𝜙𝑗 −
𝜙𝑗(1−𝜙𝑗)𝐧𝐣

𝑊
}]𝑁

𝑗=1 ,                   (18) 

 

where 𝜙 is the phase-field variables, 𝑀 is the mobility, 𝑊 is the 

interface half-width, and 𝐧 is the interface normal vector (8). The 

superscript 𝑖 indicates the current phase and N is the number of 

phases.  

The model is solved using finite volume method where a third-

order weighted essentially non-oscillatory (WENO) scheme is used 

to discretize the advection term and a third-order TVD Runge-Kutta 

method is used for time integration. The density and viscosity are 

calculated as follows: 

𝜌 = 𝜙𝑑𝜌𝑙 + (1 − 𝜙𝑑)𝜌ℎ,                (19) 

𝜐 = 𝜙𝑑𝜐𝑙 + (1 − 𝜙𝑑)𝜐ℎ,                (20) 

𝜙𝑑 = ∑ 𝜙𝑖
𝐷
𝑖=1 ,                       (21) 

where subscript 𝑑  indicates the dispersed phase (bubbles) and 

superscript 𝐷 indicates the number of dispersed phases (number 

of bubbles). 

 

3. Results and Discussions 

Turbulent bubbly downflows which appears in advanced nuclear 

power reactors are considered in this study. A vertical channel with 

size of π×2×π/2 are examined where the streamwise, wall-

normal, and spanwise direction are denoted by x, y, and z direction, 

respectively. The flow is driven by a constant pressure gradient and 

gravity in negative x direction. Periodic boundary conditions are 

applied to the streamwise and spanwise direction. No slip conditions 

are applied at the walls (1). 

Two cases are simulated: a system with density ratio of 10 and a 

water-air system. The parameters for both cases are shown in Table 

1 in SI unit. The Eotvos and Morton number are defined as: 

𝐸𝑜 =
𝜌ℎ𝑔𝐷2

𝜎
,                (22) 

𝑀𝑜 =
𝑔𝜇ℎ

4

𝜌ℎ𝜎3.                (23) 

The Morton number is material properties and the value for water-

air system is 2.55×10-11. Therefore for the same Eotvos number 

with the reference problem with density ratio of 10, the bubble 

diameter is determined to be 1.52×10-3. The sum of pressure 

gradient and the weight of the mixture is constant and determined 

using: 

𝜏𝑤 = (
𝑑𝑝

𝑑𝑥
+ 𝜌𝑎𝑣𝑔𝑔) 𝐻 = 𝛽𝐻,                (24) 

where 𝜏𝑤is the wall shear stress, 𝜌𝑎𝑣𝑔 is the average density of 

the mixture, 𝐻  is the half-width, and 𝛽  is the sum of pressure 

gradient and the weight of the mixture. The void fraction of 1.5% are 

examined in this study. 

 

Table 1. Simulation parameters (SI unit) 

Parameters Density ratio = 10 Water-air 

𝐸𝑜 3.13E-01 3.13E-01 

 𝑀𝑜 1.54E-10 2.55E-11 

𝜌ℎ 998 998 

𝜇ℎ 1.00E-03 1.00E-03 

𝑔 9.8 9.8 

𝜌𝑙 99.8 1.2 

𝜇𝑙 1.00E-03 1.80E-05 

𝜎 4.00E-02 7.28E-02 

𝐷 1.13E-03 1.52E-03 

 

The turbulent pressure and velocity fields for the single phase flow 

are used as initial conditions. Bubble are then put in the channel with 

regular configuration of 3×3×2 bubbles and let to develop for non-

dimensional period of 𝑡∗ = 150 , where the time is non-

dimensionalized by half-width and average mean velocity of single-

phase flow. The turbulent statistics are then calculated for the 

following period of 𝑡∗ = 150. The results of the present simulation 

are shown in the following two sub-sections. 

 

3.1. Turbulent bubbly downflows with low density ratio 

The bubble distribution for void fraction 1.5% the final time.is 

shown in Fig. 1. The bubble shapes between the present and 

reference (1) are relatively very close. The bubble tends to gathered 

in the center of the flow to balance the shear stress, pressure 

gradient, and weight of the mixture. Similar with the reference much 

vorticity appear behind the bubbles as the buoyancy of the bubbles 

against the downlow. 

 

Fig. 1  The bubble distribution for void fraction of 1.5%. (left) Lu 

and Tryggvason (right) present simulation. 

 

The void fraction and streamwise mean velocity are shown in 

Figs. 2 and 3, respectively. There are some differences with the 

reference, where more bubbles are suggested to gather in the 

center by the references. However, the general behavior are quite 

similar where bubbles gathered at the center and the maximum 

streamwise velocity are suppressed by the existence of bubbles.  
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Fig. 2  Void fraction distribution for void fraction of 1.5%. (black) Lu 

and Tryggvason, (blue) present simulation. 

 

 
Fig. 3  Streamwise mean velocity distribution for void fraction of 

1.5%. (black) Lu and Tryggvason, (blue) present simulation. 

 

3.2. Turbulent bubbly downflows with high density ratio 

The turbulent downflows for water-air system has been simulated 

stably. In this case, the bubble are more deformed, showing 

ellipsoidal shape. Because the bubble are more deformed they 

easily move in the channel. Fig. 4 shows the bubble distribution at 

the final time for void fraction 1.5%. In this case, the bubbles are 

distributed more homogeneously in the channel. More vortices 

appears in entire channel. 

 

Fig. 4  The bubble distribution for water-air system with void 

fraction of 1.5% 

 

Figs. 5 and 6 show the void fraction and streamwise mean 

velocity distribution of the water-air system in comparison with low 

density ratio case. The void fraction and streamwise velocity are 

quite different from the low density ratio case where bubbles are 

more dispersed and the mean velocity is suppressed more 

homogeneously. It seems that the bubbles affect the turbulent flow 

more in the case of water-air system. This results, however, need to 

be further studied by calculating other turbulent statistics. 

 

 

Fig. 5  Comparison of void fraction distribution. (blue) density ratio 

of 10, (orange) water-air system. 

 

 

Fig. 6  Comparison of streamwise mean velocity distribution. 

(blue) density ratio of 10, (orange) water-air system. 

 

4. Conclusions 

A cumulant lattice Boltzmann method with multi-phase model has 

been developed for simulating turbulent bubbly channel flow with 

high density and viscosity ratio. First, the turbulent bubbly 

downflows with low density ratio were simulated and compared with 

the reference. The results show the general behavior of the 

obtained flow are the same with the reference where the bubbles 

tends to fill the center of the channel and suppressed the mean 

velocity at the center. Much vortices appear behind of the bubbles 

in this case. Finally, the turbulent bubbly downflows for water-air 

system is simulated. The results show that the bubbles are more 

deformed and dispersed. More vortices appear in this case than in 

the low density ratio case. The mean velocity is suppressed more 

homogeneously. This result show that using the assumption of low 

density ratio for simulating water-air system may not be correct.  
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