Japan Korea CFD Seminar 2007 December 21, 2007, Akihabara Convention Hall, Tokyo, Japan

Implicit LES using Weighted Compact Nonlinear Scheme

Keiichi Ishiko, Naofumi Ohnishi, Keisuke Sawada Tohoku University, Sendai, Japan

Numerical Methods for Turbulent Flow

Large Eddy Simulation (LES)

- One of the major techniques
- Needs suitable SGS model
 - Compressible turbulent flowfield involving shock wave

Implicit LES

- Not require SGS model
- Capable of wide application
 - Compressible turbulent flowfield involving shock wave
- Monotonically Integrated LES (MILES) (Boris et al., 1992)
 - Flux-Corrected Transport (FCT)

Implicit LES Using WCNS

Implicit LES w/o SGS model

MILES

Numerical viscosity of monotone scheme

FCT, TVD or ENO ..

Weighted Compact Nonlinear Scheme (WCNS)

- Monotone scheme in MILES approach
- -Shock capturing scheme developed by Deng et al. (2000)
- -5th-order compact scheme
- -Weighted ENO like weighted interpolation
- -High spatial accuracy even at discontinuities

Objectives

Verifications of implicit LES code using WCNS for typical test problems

- 1D Burgers turbulence

- 2D homogeneous turbulence

Weighted Compact Nonlinear Scheme

Weighted Interpolation

1D Burgers Turbulence

Comparison

- Implicit LES using WCNS
- LES with Dynamic Smagorinsky Model
- DNS

Energy Spectra

Velocity Profiles

$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\nabla p + \nu \nabla^2 \mathbf{u} \\ \nabla \cdot \mathbf{u} = 0 \end{cases} \begin{bmatrix} \text{Initial Reynolds number} \\ R(t=0) = 2048 \end{bmatrix}$

Comparison

- Implicit LES using WCNS
- LES with Dynamic Smagorinsky model
- DNS

Vorticity Contours (Close up view)

Implicit LES using WCNS

LES with DSM

Conclusions

Verifications of implicit LES code using WCNS for 1D Burgers turbulence and 2D homogeneous turbulence were carried out

- Velocity profiles and vortices are sharply captured without any numerical oscillations
- Computed energy spectrum in inertial range agrees quite well with that obtained by DNS
- Obtained energy spectrum at shortest wave length is shown to be truncated quite naturally

Thank you for your kind attention