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In this investigation, flow patterns past two identical nearby circular cylinders at Re=100 are numerically studied as a 
basic model for laminar wake interaction. An immersed boundary method is employed for effective treatment of the 
cylinders on a Cartesian grid system. We consider all possible arrangements of the two circular cylinders in terms of 
the distance between them and the inclination angle of the line connecting their centers with respect to the main flow 
direction. It is found that eight patterns of distinct flow characteristics are identified by vorticity contours and 
streamlines. Collecting all the results obtained, we propose the flow-pattern diagram (“map”) for the two cylinders to 
provide an overall picture on the wake interaction. The perfect geometrical symmetry implied in the flow configuration 
allows one to use this diagram to distinguish flow pattern past two identical circular cylinders arbitrarily positioned in 
physical space with respect to the main flow direction. 

 
１．Introduction 

Cross-flow past a group of cylinders is often found in practical 
engineering applications. Flow characteristics past each cylinder are 
affected by its neighbors via wake interaction, resulting in alteration of the 
overall flow pattern. Therefore, flow pattern past multiple cylinders 
heavily depends on their relative positions with respect to the main-flow 
direction. Consequently, vortex-shedding frequency of the individual 
cylinder is accordingly determined, and serves as an important factor in 
generation of flow noise[1]. Being motivated by this, many researchers 
have been involved in studying wake interaction between two circular 
cylinders of equal diameter immersed in a cross freestream as a basic 
wake-interaction model[2,3,4,5]. In spite of the numerous studies carried 
out so far, the case where the two cylinders are placed in a staggered 
position has been rarely studied, especially in the laminar flow regime. In 
this investigation, flow patterns past two nearby circular cylinders of 
equal diameter immersed in the cross-flow at Re=100, based on the 
freestream velocity (U) and the cylinder diameter (D), were numerically 
studied as a basic model for laminar wake interaction. An immersed 
boundary method[6] was employed for effective treatment of the 
cylinders on a Cartesian grid system. We consider all possible 
arrangements of the two circular cylinders in terms of the distance 
between them and the inclination angle of the line connecting their centers 
with respect to the main flow direction. 
 
2．Formulation and Numerical Methodology 

The current investigation requires a parametric study where numerous 
numerical simulations must be performed with various values of the 
streamwise center distance (L) and the vertical center distance (T). See Fig. 
1(a). The governing equations for two-dimensional incompressible flow, 
modified for the immersed boundary method[6], are as follows; 
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where ui (or u, v), p, q and fi represent velocity component in xi (or x, y) 
direction, pressure, mass source/sink, and momentum forcing, 
respectively. All the physical variables except p are nondimensionalized 
by U and D; pressure is nondimensionalized by far-field pressure (p∞) and 
the dynamic pressure. The governing equations were discretized using a 
finite-volume method in a nonuniform staggered Cartesian grid system. 
Spatial discretization is second-order accurate. A hybrid scheme is used 

for time advancement; nonlinear terms are explicitly advanced by a 
third-order Runge-Kutta scheme, and the other terms are implicitly 
advanced by the Crank-Nicolson method. A fractional step method[7] 
was employed to decouple the continuity and momentum equations. The 
Poisson equation resulted from the second stage of the fractional step 
method was solved by a multigrid method. For detailed description of the 
numerical method used in the current investigation, see Yang and 
Ferziger[8]. 

T

x

y

U

L

gSurroundin Cylinder

Main Cylinder

R

θ

L/D

T/
D

0 1 2 3 4 5

0

1

2

3

4

5

 
(a)                        (b) 

Figure 1.  Physical configuration: (a) staggered position of two 
circular cylinders, (b) locations of the center of the 
surrounding circular cylinder, indicated by dots. 

 
The main cylinder (MC) is fixed at the origin of the coordinate system, 

and the downstream cylinder (hereafter, called “surrounding cylinder”, 
SC) is placed on various locations relative to MC, which are represented 
by dots in Fig. 1(b). The total number of cases computed is 208. The 
entire computational domain was defined as 35− D ≤ x ≤ 35D, and 

50− D≤ y≤ 50D. For each cylinder, 32× 32 uniform grid cells in x and 
y directions, respectively, were allocated, and uniform grid cells of the 
same cell size as in the cylinder region were employed between the 
cylinders. In the other region of the domain, nonuniform grid cells were 
used. The numerical resolution was determined by a grid-refinement 
study to ensure grid-independency. The maximum number of grid cells 
allocated were 480×352. No-slip condition was imposed on the cylinder 
surfaces; a Dirichlet boundary condition (u=U, v=0) was used on the inlet 
boundary of the computational domain, while a convective boundary 
condition was employed at the outlet. A slip boundary condition (∂u/∂y=0, 
v=0) was imposed on the other boundaries. 
 
3．Results and Discussion 
3.1 Classification of Flow Pattern 

In the present investigation, we classified types of flow pattern based 
on streamlines and contours of spanwise vorticity (ωz). Spanwise vorticity 
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is defined as 0.5(∂v/∂x− ∂u/∂y). 
Base Bleed pattern is noticed when (L/D, T/D) = (0.0, 1.25), (0.25, 1.0), 

(0.25, 1.25), (0.5, 1.0), (0.75, 0.75). Even though the distance between the 
two cylinders is quite short, the flow through the “gap” is significant 
owing to the large θ. Low pressure region alternates up and down behind 
MC; the gap flow also alternates accordingly. The short distance between 
the cylinders prevents “individual” shedding; the vortices are shed in a 
fashion similar to that behind a single object. 

Biased Base Bleed pattern is found when (L/D, T/D) = (1.0, 0.25), (1.0, 
0.5). The gap between the cylinders is very narrow like the BB pattern, 
but θ is small unlike the BB pattern. The flow through the gap is always 
heading downwards due to the small θ, while in the BB pattern, the 
direction of the gap flow is alternating up and down. Like in the BB 
pattern, vortices are shed as if the two cylinders were just one object. 

Shear Layer Reattachment pattern is observed approximately when 
1.25≤ L/D≤ 4.0, T/D≤ 0.75; in this range, θ is less than 20 .̊ The shear 
layer formed above MC reattaches on SC. A lower portion of the shear 
layer is deflected by SC, and together with the shear layer formed below 
MC, surrounds the recirculation region behind MC. It is also noticed that 
vortex shedding from MC has been completely suppressed by SC, and 
vortex shedding from SC is somewhat delayed. This is one of the 
important features of SLR pattern. Sharman et al.[3] reported that in 
tandem arrangements of the two cylinders, vortex shedding from MC 
resumes at a certain “critical” distance between them which is in the range 
of 3.75≤ L/D≤ 4.0 depending on Re.  

Induced Separation pattern is noticed approximately when 
1.0≤ L/D≤ 3.5, 0.75≤ T/D≤ 1.75. In this region, θ is relatively large 
compared to that of SLR pattern. The shear layer formed above MC does 
not reattach on SC, but is deflected by SC. Unlike SLR pattern, vortices 
are shed from MC in IS pattern.  

Vortex Impingement pattern appears in the range of approximately 
L/D≥ 4.0, T/D≤ 1.75, where the two cylinders are far apart (R/D≥ 4.0) 
and θ is less than 23 .̊ When the two cylinders are placed in tandem with a 
short distance between them (L/D≤ 3.75 for Re=100), SC suppresses the 
vortex shedding of MC[3]. With a larger distance, however, SC fails to 
suppress the vortex shedding of MC, and vortices are shed from both 
cylinders. Vortices of positive and negative signs, shed from MC in an 
alternating manner, impinge upon SC. However, when the two cylinders 
are slightly “off-tandem” (say, T/D ≥ 0.25), only the vortices which 
developed in the upper shear layer of MC impinge upon SC while the 
vortices in the opposite shear layer simply pass SC without impingement.  

Flip Flopping pattern is observed in the range of approximately 
L/D≤ 2.5, 1.5≤ T/D≤ 2.0 where the distance between the two cylinders 
(1.34≤ R/D≤ 3.20) is somewhat larger than those in BB and BBB 
patterns, and θ ≥ 45 .̊ In this pattern, both cylinders shed vortices, 
yielding two pairs of counter-rotating vortices. Unlike BB or BBB pattern, 
however, FF pattern is irregular in time, being consistent with Kang’s 
finding[2]. He reported that in side-by-side arrangements of two cylinders, 
flow pattern is irregular when 1.4≤ T/D≤ 2.2.  

Modulated Periodic pattern occurs in the range of approximately 
0.5 ≤ L/D ≤ 3.0, T/D ≥ 2.5 where the two cylinders are far apart 
(2.69≤ R/D≤ 5.59), and approximately θ ≥ 45 .̊ Combination of the 
large distance and the relatively high inclination angle yields weak 
interaction between the two wakes, resulting in slight modulation in 
vortex shedding from each cylinder. It is noticed that the vortex-shedding 
frequency of MC is slightly higher than that of SC. MP pattern is similar 
to ‘VPE’(Vortex Pairing and Enveloping) or ‘VPSE’ (Vortex Pairing, 
Splitting and Enveloping) patterns in Sumner et al.[5] for 

850≤ Re≤ 1900.  
Synchronized Vortex Shedding pattern is noticed in the arrangements 

where the two cylinders is far apart (R/D≥ 2.5) and θ ≥ 20 .̊ Due to the 
long distance and high inclination angle, the interaction of the wakes is 
negligible, and vortices are shed just like the single cylinder in the 
freestream.  

 
3.2 Flow-pattern Diagram 
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Figure 2. Flow-pattern diagram at Re=100. 

 
Collecting all the computed results, we propose the flow-pattern 

diagram in the first quadrant of physical space with the main cylinder 
fixed at the origin (Fig. 2). Due to the flow symmetry implied in the flow 
configuration, the proposed diagrams still can be used, even though the 
surrounding cylinder is located in one of the other quadrants. The fact that 
the diagram (“map”) is useful in predicting flow patterns past two nearby 
circular cylinders sheds light on developing a wake-interaction model in 
engineering flows. 
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