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[50th Anniversary Symposium]

From the Kinetic Theory of Gases to Aerosol Flows

CMLS, Ecole polytechnique, France François Golse†

The Vlasov-Stokes and the Vlasov-Navier-Stokes systems used in the description of thin sprays or aerosol
flows can be derived from the system of Boltzmann equations for binary gas mixtures. One component of
this mixture is the dispersed phase (particles or droplets in the aerosol), while the other component is the
propellant gas. The Vlasov-Stokes or Vlasov-Navier-Stokes systems are obtained in appropriate scaling
regimes by a rather delicate asymptotic analysis.

1 Introduction

This talk reports on recent progress on the derivation of
models for aerosol flows obtained in collaboration with E.
Bernard, L. Desvillettes and V. Ricci 1, 2).

An aerosol, or a spray, consists of a dispersed phase
(solid particles or liquid droplets) moving in a surround-
ing gas, referred to as the propellant. A class of models
for thin sprays (i.e. when the volume fraction of the dis-
persed phase is � 0.1) involves a noncollisional kinetic,
Vlasov type equation for the dispersed phase coupled to a
fluid equation for the propellant via the drag force on the
particles or droplets exerted by the surrounding gas. For
instance, when compressibility effects in the propellant can
be neglected, one can use the Vlasov-Navier-Stokes system

∂tF + v · ∇xF = κ
mp
∇v · ((v − u)F ) , ∇x · u = 0 ,

∂tu+ u · ∇xu+ 1
ρg
∇xp = ν∆xu+ κ

ρg

∫
(v − u)Fdv .

The unknowns in this system are the velocity distribution
function F ≡ F (t, x, v) of the dispersed phase, and the ve-
locity field u ≡ u(t, x) ∈ R3 and pressure p ≡ p(t, x) of
the propellant. The parameters ν and κ are respectively the
kinematic viscosity of the propellant and the friction coef-
ficient, while mp is the mass of the droplets or particles1

and ρg the (constant) gas density. When the motion of the
propellant is slow, the Vlasov-Stokes system can be used

∂tF + v · ∇xF = κ
mp
∇v · ((v − u)F ) ,

ν∆xu+ κ
ρg

∫
(v − u)Fdv = 1

ρg
∇xp , ∇x · u = 0 .

The purpose of this talk is to explain how these systems can
be justified by means of systematic asymptotic analysis.

†E-mail: francois.golse@polytechnique.edu
1We assume for simplicity that the aerosol is monodisperse, i.e. all the

particles or droplets in the dispersed phase are identical (with the same

size and the same mass).

2 Rigorous justification of the Brinkman force

In a first series of results 3–5), one studies the quasi-static
flow of the propellant around a slowly moving system of
spherical particles or droplets2 centered at N points de-
noted c1, . . . , cN in a spatial domain Ω of R3 with smooth
boundary ∂Ω, moving with velocities v1, . . . , vN ∈ R3.
Let Ωr := {x ∈ Ω s.t. |x − ck| > r for k = 1, . . . , N}.
The Stokes equation set in the spatial domain Ωr is studied
in the limit r → 0 while Nr = λ > 0:

ν∆xur = 1
ρg
∇xpr − f , ∇x · ur = 0 , x ∈ Ωr ,

ur(x) = vk for |x− ck| = r , ur(x) = 0 for x ∈ ∂Ω ,

where f is a square integrable, solenoidal force field. That
the scaling condition r = λ/N → 0 is natural follows
from the classical formula for the drag force exerted by
a slow, viscous incompressible flow on a sphere (see fla.
(20.14), referred to as “Stokes’ formula”, in the Landau-
Lifshitz treatise6) on fluid mechanics). Roughly speaking,
since the drag force on a sphere of radius r is proportional
to r, one expects that the drag force exerted on a system of
N spheres of radius r should be proportional to Nr, pro-
vided that these spheres are sufficiently far from each other
so as to be treated independently.
Theorem 1.4) Under the scaling condition above, assume

N∑
k=1

|vk|2 ≤ Const. N ,
1

N

N∑
k=1

δck,vk → F (x, v) ,

(where δck,vk is the 6-dimensional Dirac “function” cen-
tered at ck, vk), and that the particle centers satisfy the sep-
aration condition

k 6= l =⇒ |ck − cl| > 2r1/3 and dist(ck, ∂Ω) > r1/3 .

2The exchange of torque between the dispersed phase and the propel-

lant is neglected since r � 1.
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Then ur → u as r → 0, where

ν∆xu+ 6πνλ

∫
(v − u)Fdv = 1

ρg
∇xpr − f ,

∇x · u = 0 for x ∈ Ω , u(x) = 0 for x ∈ ∂Ω .

The proof is based on homogenization techniques in-
volving the notion of harmonic capacity, pioneered by V.A.
Marchenko, E. Ya. Khruslov and their collaborators. The
steady Navier-Stokes equation with Brinkman force can
also be derived in the same way. Whether the separa-
tion condition is propagated under the dynamics of the dis-
persed phase remains unknown at the time of this writing,
and this is why the Vlasov-Stokes or Vlasov-Navier-Stokes
systems have not yet been established by this procedure.
Even if this could be achieved, particle configurations sat-
isfying the separation condition would remain of low prob-
ability in the sense of statistical mechanics, and this casts
doubts on the physical interest of this approach. It should
be mentioned that Hillairet 5) has generalized the theorem
above under a less stringent, and therefore more satisfying
separation condition.

3 Kinetic model

Another approach to establishing the Vlasov-Navier-
Stokes system uses the coupled system of Boltzmann equa-
tions for the propellant and the dispersed phase viewed
as a binary gas mixture. Its unknowns are the velocity
distribution functions in the dispersed phase and in the
propellant, denoted respectively by F ≡ F (t, x, v) and
f ≡ f(t, x, w). The system of Boltzmann equations gov-
erning the evolution of F and f is

∂tF + v · ∇xF = B(F, F ) +D(F, f) ,

∂tf + w · ∇xf = R(f, F ) + C(f, f) ,

where C(f, f) is the Boltzmann integral describing the in-
stantaneous variation of f due to collisions between gas
molecules. Similarly, D(F, f), resp. R(f, F ) are collision
integrals describing the instantaneous variation of F , resp.
f , due to collisions between gas molecules and particles or
droplets in the dispersed phase. Finally B(F, F ) is the inte-
gral accounting for the effect of collisions in the dispersed
phase. This model involves the following parameters:

Parameter Definition

L size of the container

Np number of dust particles/L3

Ng number of gas molecules/L3

Vp thermal speed of particles

Vg thermal speed of molecules

Spg particle/gas cross-section

Sgg molecular cross-section

η = mg/mp mass ratio

ε = Vp/Vg thermal speed ratio

µ = mpNp/mgNg mass fraction

Introducing the dimensionless variables

x̂ = x/L , v̂ = v/Vp , ŵ = w/Vg , t̂ = tVp/L

and the dimensionless distribution functions

F̂ (t̂, x̂, v̂) =
V 3
p F (t, x, v)

Np
, f̂(t̂, x̂, ŵ) =

V 3
g f(t, x, w)

Ng
,

we arrive at the dimensionless form of the system of Boltz-
mann equations

∂t̂F̂ + v̂ · ∇x̂F̂ = NpSppLB(F, F ) +
NgSpgL

ε D(F, f)

∂t̂f̂ + ŵ · ∇x̂f̂ = NpSpgLR(f, F ) +
NgSggL

ε C(f, f)

Henceforth we assume that NpSppL� 1 so that the effect
of collisions between solid particles or droplets in the dis-
persed phase can be neglected to leading order. Then we
also postulate that

NgSpgL = ε/η , NpSpgL = (NgSggL)−1 = ε/µ

with η � ε � µ. Dropping hats on dimensionless quanti-
ties to simplify the notation, and neglecting right away the
dispersed phase collision integrals, we arrive at the scaled
Boltzmann system

∂tF + v · ∇xF =
1

η
D(F, f) ,

∂tf +
1

ε
w · ∇xf =

1

µ
R(f, F ) +

µ

ε2
C(f, f) .

The collision integrals C(f, f), D(F, f), and R(f, F ) act
on the velocity variables of f and F and satisfy the follow-
ing identities:∫
C(f, f)dw =

∫
R(f, F )(w)dw =

∫
D(F, f)dv = 0 ,

expressing the local conservation law of the particle num-
ber in either the dispersed phase or the propellant, together
with ∫

C(f, f)wdw = 0 ,
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expressing the local momentum conservation law in the
propellant, and

ε

∫
D(F, f)vdv + η

∫
R(f, F )wdw = 0 ,

expressing the momentum balance in the interaction of the
dispersed phase with the propellant.

4 Dimensionless form of the collision integrals

The dimensionless form of the Boltzmann collision inte-
gral for a monatomic propellant is

C(f, f)(t, x, w) =

∫∫
|ω|=1

(f ′f ′∗−ff∗)c(w−w∗, ω)dw∗dω

where in the r.h.s. f (resp. f∗, f ′, f ′∗) designates f(t, x, v)

(resp. f(t, x, w∗), f(t, x, w′), f(t, x, w′∗)), while

c(W,ω) = |W |σgg(|W |, | cos(Ŵ, ω)|) ,

where σgg is the differential cross-section of gas molecules.
The notation w′, w′∗ designates

w′ = w′(w,w∗, ω) = w − (w − w∗) · ωω ,

w′∗ =w′∗(w,w∗, ω) =w∗ + (w − w∗) · ωω .

In other words, (w′, w′∗) runs through the set of all pre-
collision velocity pairs leading to post-collision velocities
(w,w∗) as ω runs through the unit sphere, assuming that
the gas molecules are point particles and that the collisions
are elastic. In particular, the Boltzmann collision integral
satisfies the local conservation law of energy: for each con-
tinuous and rapidly decaying distribution function f ,∫

C(f, f) 1
2 |w|

2dw = 0 .

The dimensionless form of the collision integrals for the
interaction between the dispersed phase and the propellant
is slightly more involved. First one can assume that the
solid particles or droplets in the dispersed phase are point
particles, and that the collisions with the gas molecules are
elastic. Denoting

j(F, f)(t, x, v, w, ω)

:= F (t, x, v′′)f(t, x, w′′)− F (t, x, v)f(t, x, w)

with

v′′ = v′′(v, w, ω) = v − 2η
1+η (v − 1

εw) · ωω ,

w′′ =w′′(v, w, ω) = w − 2
1+η (w − εv) · ωω ,

one has, in the case of elastic collisions

D(F, f) =

∫∫
|ω|=1

j(F, f)b(εv − w,ω)dwdω ,

R(f, F ) =

∫∫
|ω|=1

j(F, f)b(εv − w,ω)dvdω .

In this case again, the collision kernel b is

b(U, ω) = |U |σpg(|U |, | cos(Û, ω)|) ,

where σpg is the differential cross-section of particles or
droplets in the dispersed phase with the gas molecules.
These collision integrals satisfy the energy balance identity

ε2
∫
D(F, f) 1

2 |v|
2dv + η

∫
R(F, f) 1

2 |v|
2dv = 0

for all continuous and rapidly decaying F and f .
Another model for the collisions between the dispersed

phase and the propellant is based on the idea that the
droplets or solid particles in the dispersed phase are macro-
scopic objects, and that impinging gas molecules are dif-
fusely reflected. In that case, the collision integrals take
the form

D(F, f)(t, x, v)

=

∫∫
F (t, x, V )f(t, x,W )Kpg(v, V,W )dV dW

−F (t, x, v)

∫∫
f(t, x,W )Kpg(ṽ, v,W )dṽdW ,

R(f, F )(t, x, w)

=

∫∫
F (t, x, V )f(t, x,W )Kgp(w, V,W )dV dW

−f(t, x, w)

∫∫
F (t, x, V )Kgp(w̃, V, w)dw̃dV ,

where

Kpg(v, V,W )

=

∫
|n|=1

(n · (εV −W ))+(n · ( εV+ηW
1+η − εv))+dn

×β
4ε3

2π2 ( 1+η
η )4 exp(−β

2

2 ( 1+η
η )|εv − εV+ηW

1+η |
2) ,

Kgp(w, V,W )

=

∫
|n|=1

(n · (εV −W ))+(n · (w − εV+ηW
1+η ))+dn

× β4

2π2 (1 + η)4 exp(−β
2

2 ((1 + η)|w − εV+ηW
1+η |

2) .

In these formulas, β =
√
ηmp/2πkBTsurf , where kB is

the Boltzmann constant and Tsurf the temperature at the
surface of the particles or droplets. See Ref. 7 for a thor-
ough description of this model.

5 Main results

Assume that the collision kernels c and b satisfy Grad’s
“hard” angular cutoff condition:

0 <c(W,ω) ≤ c∗(1 + |W |)γ ,

0 < b(U, ω) ≤ b∗(1 + |U |)β ,
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for some b∗, c∗ > 1 and β, γ ∈ [0, 1], while∫
|ω|=1

c(W,ω)dω ≥ 1

c∗(1 + |W |)
,∫

|ω|=1

b(U, ω)dω ≥ 1

b∗(1 + |U |)
.

Assume also that the radial function α ≡ α(|w|) such that3∫∫
|ω|=1

(α(|w|)w1w2 + α(|w∗|)w∗1w∗2 − α(|w′|)w′1w′2

−α(|w′∗|)w′∗1w′∗2)c(|w − w∗|, ω)M(w∗)dw∗dω = w1w2

is bounded, where M(w) := (2π)−3/2 exp(−|w|2/2)

is the centered, reduced Maxwellian equilibrium density
(with unit pressure and temperature). For instance, if the
collision kernel c is function of the form4 c(W,ω) =

C(| cos(Ŵ, ω)|), the function α is a (positive) constant.
Theorem 21). Assume that µ = 1 and η � ε2 → 0,

and that (Fε,η, fε,η) is a solution to the scaled Boltzmann
system. Assume that

sup
t+|x|≤R

v∈R3

(1 + |v|)p|Fε,η(t, x, v)− F (t, x, v)| → 0

for some p > 3 where F is locally bounded, while
fε,η(t, x, w) = M(w)(1 + εgε,η(t, x, w)) and∫ T

0

∫∫
|x|≤R

|gε,η(t, x, w)−g(t, x, w)|2M(w)dwdxdt→ 0

where g is locally bounded. Then g is of the form

g(t, x, w) = ρ(t, x) + u(t, x) · w + θ(t, x) 1
2 (|w|2 − 3)

where (F, u) is a solution of the Vlasov-Navier-Stokes sys-
tem with

ν = 2
15
√
2π

∫ ∞
0

α(r)r6e−r
2/2dr

κ = 1
3

∫
|w|2Q(|w|)M(w)dw

where

Q(|U |) =


8π

∫ 1

0

σpg(|U |, λ)λ2dλ (elastic case)
√

2π

3β
+ |U | (inelastic case)

Theorem 31). Assume that η � ε2 � µ4 → 0, and
that (Fµ,ε,η, fµ,ε,η) is a solution to the scaled Boltzmann
system. Assume that

sup
t+|x|≤R

v∈R3

(1 + |v|)p|Fµ,ε,η(t, x, v)− F (t, x, v)| → 0

3See Ref. 8 for the proof of existence and uniqueness of this function.
4Molecular interactions leading to such collision kernels are referred

to as “(pseudo-)Maxwellian molecules”.

for some p > 3 where F is locally bounded, while
fµ,ε,η(t, x, w) = M(w)(1 + εgµ,ε,η(t, x, w)) and∫ T

0

∫∫
|x|≤R

|gµ,ε,η − g|2(t, x, w)(1 + |w|)qM(w)dwdxdt

→ 0

for some q > 1, where g is locally bounded. Then g is of
the form

g(t, x, w) = ρ(t, x) + u(t, x) · w + θ(t, x) 1
2 (|w|2 − 3)

where (F, u) is a solution of the Vlasov-Stokes system and
µ and κ are given by the same formulas as in Theorem 2.

The statements of Theorems 2 and 3 include assumptions
on the solutions which we do not know how to verify so
far. In that sense, these theorems, although rigorous from
the mathematical point of view, are “formal” justifications
of the Vlasov-Stokes or Vlasov-Navier-Stokes systems in
the style of Refs. 9 and 10.

A significant part of the proofs of Theorems 2 and 3 is
the derivation of the Navier-Stokes equations for incom-
pressible flows, or of the Stokes equations, from the Boltz-
mann equation of the kinetic theory of gases (by a joint
small Mach and small Knudsen number5 asymptotic limit).
The present understanding of these fluid dynamic limits of
the Boltzmann equation is very satisfying: see Refs. 9–14
and chapter 3.2 in the book 15).

The new feature in the proofs of Theorems 2 and 3 is
the derivation of the drag force which couples the Vlasov
equation for the dispersed phase to the motion equation
(Stokes or Navier-Stokes) for the propellant. The key idea
in this derivation is best explained in the case of elastic
collisions between the dispersed phase and the propellant.
Due to the small mass ratio η, the velocity of a particle
or droplet in the dispersed phase is only slightly deflected
due to collisions with a gas molecule. On the other hand,
a gas molecule impinging on a heavier droplet or particle
in the dispersed phase is almost specularly reflected. The
integrand j(Fε,η, fε,η)(t, x, v, w, ω) is of order η and can
be approximated by the first term in its Taylor expansion,
because fε,η is a centered Maxwellian at leading order.

6 Conclusion

This talk discusses two strategies for deriving the
Vlasov-Navier-Stokes and Vlasov-Stokes systems used in

5The Knudsen number is the ratio of the mean free path of gas

molecules to the typical length scale in the flow of a gas described by

the Boltzmann equation.
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the modeling of thin sprays. The first strategy is based on
complete mathematical results on the homogenization of
the steady Stokes or Navier-Stokes equations, and provides
a fully rigorous justification of the formula for the friction
force exerted on the fluid by the dispersed phase. However,
this approach put stringent conditions on the minimal dis-
tance between droplets or solid particles in the dispersed
phase, whose persistence under the dynamics remains un-
clear at the time of this writing. This seriously complicates
the task of deriving the coupled Vlasov-Stokes or Vlasov-
Navier-Stokes equations by this procedure.

The second approach uses a kinetic description of the
spray or aerosol viewed as a binary gas mixture, by a cou-
pled system of Boltzmann equations. Describing the dis-
persed phase in terms of a Boltzmann equation is not a
“first principle” model — in other words, it is not equiv-
alent to writing Newton’s second law of motion for each
particle in the dispersed phase. On the other hand, this
approach makes it possible to include collision effects be-
tween the particles or droplets in the dispersed phase. We
have not discussed these effects in the present work for the
sake of simplicity, but several physical phenomena could
be taken into account with the formalism introduced in this
talk (polydispersion, coagulation, fragmentation . . . ).
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