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[50th Anniversary Symposium]

Part I. Landscape of JSFM 50 years ago; Part II. New perspectives

on mass conservation law and waves in fluid mechanics
Department of Physics, The University of Tokyo Tsutomu Kambe†

Abstract: The Japan Society of Fluid Mechanics originated from a preliminary organization consisting
of pioneer researchers of fluid mechanics in 1968, fifty years ago, and developed into a formal academic
society in 1982. The first part of this presentation is devoted to recollecting scientific achievements in Japan
made by the pioneers already at the time of its start. Their impacts on fluid mechanics are shining still now.
In the second part, from purely scientific and modern point of views, we focus on physical aspects of mass
conservation law and waves in fluid mechanics.

1 Introduction

Fundamental conservation equations of fluid mechanics
are derived as a non-relativistic limit from the relativistic
fluid mechanics1). The relativistic energy equation can be
decomposed in the following way (Ref.[2], Appendix B.4):(

Rest mass part of O(c2)
)
+
(

Flow energy part of O(u2)
)
= 0,

where c is the light speed and u a representative magnitude
of fluid velocity v. In the non-relativistic limit u/c → 0,
this equation splits into two parts. From the first term, the
so-called continuity equation is deduced, while from the
second term the well-known energy conservation equation
is derived. Thus in the non-relativistic limit, we obtain

∂tρ + div(ρv) = 0, (1)

∂t

(
ρ
(
1
2
v2 + ϵ

))
+ div

(
ρv

(
1
2
v2 + h

))
= 0 , (2)

where ρ is the fluid density, ϵ the internal energy and h

the specific enthalpy. Here we confront unusual situation.
From a single relativistic energy equation related to the
symmetry of time-translation invariance, we have two con-
servation equations in the limit, u/c → 0. However, the
Noether’s theorem3) of theoretical physics states, ”Symme-

tries imply conservation laws”.4) Are the above results of
nonrelativistic limit satisfactory ? Or should we seek an-
other way to resolve it ? We will revisit this issue in Part
II. In Part I, we recollect the research-landscape of fluid
mechanics community in Japan fifty years ago or earlier.

Part I: Landscape of JSFM fifty years ago

2 Pioneering studies before the start of JSFM

Before the start of our society JSFM, one can recognize
significant scientific achievements already made by a num-

†E-mail: kambe@ruby.dti.ne.jp; Former Professor

ber of leading members of the society.
(a) Laminar viscous flow around a circular cylinder

One of the most significant achievements at those early
times was the successful analytical study of the late Pro-
fessor Isao Imai (1951)5), who investigated far field of the
viscous laminar flow around a circular cylinder. This was a
successive approximation to the Navier-Stokes (NS) equa-
tion, starting from the Oseen’s solution valid asymptoti-
cally at great distances. This is regarded as an external
part of the whole flow field. An internal field matching
to this external field and satisfying the non-slip bound-
ary condition over the cylinder surface was given numer-
ically by M. Kawaguti (1953)6) at the Reynolds number
R = 40 (based on the cylinder diameter) with using a hand-
calculator (Tyger). This was one of the earliest DNS’s of
the NS equation, except Thom (1933, Proc. Roy. Soc.

A141, 651: with R =10, 20). The streamlines thus ob-
tained were compared with the visualization experiment
by S. Taneda (1956)8), showing a pair of standing eddies
in the wake of the cylinder. Agreement was very excel-
lent. The numerical achievement of Kawaguti paved a path
to go ahead to develop an analytical scheme finding uni-
formly valid solution of the NS equation over the whole
field. The present speaker has a strong feeling9) that the
set of three works gave a stimulating hint for later (around
1957) development of the method of Matched Asymptotic

Expansions. In addition, their combined works have pro-
vided strong evidence that the NS equation can describe
steady laminar flows at moderate Reynolds numbers ob-
served experimentally.6)

(b) Stability of laminar flows and turbulence

Stability of laminar shear flows were studied both math-
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ematically and experimentally from fifties to sixties. Ac-
cording to the linear stability theory, a two-dimensional
jet was studied by Tatsumi & Kakutani (1958)11), and free
shear layers by Tatsumi & Gotoh (1960)12). Experimen-
tal study of a two-dimensional jet was carried out by Sato
(1960)13) on its stability and transition to turbulence.

First mathematical study in Japan on turbulence ac-
cording to the statistical theory was made by Prof. T.
Tatsumi (1957)10), investigating initial decay of homoge-
neous isotropic turbulence by assuming zero fourth-order-

cumulant of incompressibile velocity field.
(c) Streamwise vortices in boundary layer flows

At the time of sixties, there was a gap between the ob-
served phenomena of boundary layer transition to turbu-
lence and the stability analyses which were mainly con-
cerned with linear study of 2D disturbance waves. Forma-
tion of 3D-disturbances was regarded as prerequisite for the
flow transition to turbulence in the boundary layer. An es-
sential role of streamwise vortices was recognized for cre-
ation of three-dimensionality in the boundary layer. This
transition problem was reviewed by the late Professor Itiro
Tani (1969)16), and studied by Tani & Komoda (1962)14),
collaborating with the late Prof LSG Kovasznay staying in
Tokyo.∗ The vortices cause redistribution of mean veloc-
ity field. Later, the streak structure in boundary layer flows
was interpreted by this mechanism.
(d) Nonlinear waves

A blast wave is usually generated as a shock-incident
caused by a powerful explosion such as a supernova or an
atomic bomb. The velocity U within the blast wave is not
constant and always larger than the sound speed cs. Certain
exact solution of the blast wave problem was presented by
A. Sakurai (1955)7) for each of spherical, cylindrical and
planar symmetry. citing the paper of G.I. Taylor:17).

In regard to fluid motions caused by locally concentrated
vorticity, one of the well-known laws is the local-induction

law.† In regard to the local-induction law associated with
concentrated vorticity, a soliton formulation was proposed
by Hasimoto (1972)19), who transformed the the law into
the nonlinear Schrödinger equation.
(e) International relation and collaboration

International communications were carried out with both

∗The peak-valley structure associated with the streamwise vortices re-

viewed by Tani was visualized by Hino et al.15) with hydrogen bubbles.
†When a vortex filament is distorted slightly from its circular form, the

deformation wave moves along the filament like a travelling wave. This

was observed by Kambe & Takao (1971)18) in smoked vortices.

ways of receiving foreign scientists and oversea-visit of
Japanese scientists. In 1928, the Kawanishi Aircraft (Co.)
in Kobe invited Theodore von Karman (of age before 50)
from RWTH Aachen of Germany, who designed a big wind
tunnel of outflow diameter 2 m and its maximum flow
speed 45 m/sec. Soon after the Japan stay, he was ap-
pointed as the director of the Guggenheim Aeronautical
Laboratory at the California Institute of Technology (GAL-
CIT). In 1929, Ludwig Prandtl (at the age 54) was invited
to the Aeronautical Research Institute (of Tokyo Imperial
University) and gave three-day lecture at the Institute. In
his lecture, he showed two pictures of visualization com-
paring boundary layer separations over the surface of a
sphere with and without a trip wire. The trip wire caused a
dramatic effect on the boundary layer separation owing to
transition to turbulent boundary layer.

Late Professor Susumu Tomotika visited United King-
dom for two years from 1934 and studied Fluid-Dynamics

under Sir Geoffrey Taylor. At this time he was a Professor
at the Osaka Imperial University, and Imai joined him from
Tokyo as a research assistant in 1936. In 1938, Tomotika
was appointed as Professor at Kyoto Imperial University,
and Imai returned to Tokyo as a lecturer. In Kyoto, Tatsumi
was appointed as a research assistant of Tomotika’s group
in 1946, and later as an associate professor.

From 1955 to 1957, Imai stayed at Maryland Univer-
sity and Cornell University in USA by invitation in view
of his great contributions with exact mathematical analyses
in both fields of viscous flows and high-speed flows. Dur-
ing his stay, he met a number of well-known scientists: Th.
von Karman, G.K. Batchelor, J.M. Burgers. Furthermore,
he visited Johns Hopkins, New York and Boston and met
F. Clauser, L.S.G. Kovasznay, G.B. Schubauer, P.S. Kle-
banoff, S. Goldstein, C.C. Lin, and W.R. Sears. Itiro Tani
was also staying at Caltech in 1959 to 60. There remains
a photograph20) showing von Karman and Tani together at
their seminar meeting.

In 1960, there was IUTAM Symposium ”Magnetohydro-

dynamics” held at Williamsburg in USA, where there were
several Japanese participants, in addition to Tani and Imai,
also Tatsumi, Hasimoto and others. Since then, the 1960s
was an age of MHD in Japan. The IUTAM is an abbre-
viation of International Union of Theoretical and Applied

Mechanics, to which our country joined in 1951.
There was a section of Fluid Physics at JPL (Jet Propul-

sion Laboratory of NASA) administrated by Caltech. Be-
sides its work in rocket propulsion, JPL was an impor-
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tant aeronautical laboratory with a supersonic wind tunnel,
where supersonic boundary layers and instability waves
were studied. In 1960’s, they received Japanese visitors:
T, Tatsumi, H. Sato, and H. Komoda.

Fifty-two years ago (1966) at Kyoto, there was held an
international Symposium IUGG-IUTM, in which a num-
ber of renowned scientists participated (see Fig.1). After
the Kyoto conference, George Batchelor visited Taneda’s
laboratory at the Institute of Applied Mechanics, Kyushu
Univ., and got interested in various visualization experi-
ments carried out there by S. Taneda (1956), and also by
Okabe & Inoue (1960, 61). Batchelor cited a number of
photographs of their visualization in his textbook21).

By the Scholarship of British Council, Prof. Tatsumi
stayed at University of Cambridge in early 1950’s. His stay
was helped by G.I. Taylor and George Batchelor. Present
speaker (T. Kambe) also stayed at Darwin College of Cam-
bridge Univ. (1974-75) by the B-C Scholarship, and learned
the authentic style of Fluid Mechanics under George Batch-
elor (with respect) and Sir James Lighthill.

Part II. New perspectives on fluid mechanics

In this new approach, the mass conservation equation
plays a vital role. Traditional formulation regards the mass
conservation law a priori valid, and does not try to relate it
with any physical symmetry. We review such an approach
first in §3.1, and consider symmetry issues in §3.3.

3 Flows of an ideal fluid
3.1 Symmetry and conservation law

Let us consider the variational formulation for flows of an
ideal fluid. The action S and Lagrangian Λ(v, ρ, s) are22)

S =

∫
Λ( qλ(x

µ) ) dΩ, Λ(qλ) ≡ 1
2
ρv2 − ρϵ(ρ), (3)

where dΩ = dt dx1dx2dx3, and qλ(xµ) (µ = 0, 1, 2, 3;
λ = 1, · · · ) denote v = (v1, v2, v3) and ρ, where s =

const (or ds = 0) is assumed.† The Lagrangian den-
sity Λ can be written also as Λ(Xk

µ , X
k) = 1

2
Xk

0 X
k
0 −

ϵ(Xk
l , X

k) by the Lagrangian description for a particle po-
sitionXk(αµ) with the timeα0 = t, αk = Xk(t = 0), and
Xk

µ = ∂Xk/∂αµ for k, l = 1, 2, 3. The Euler-Lagrange
equation is obtained by requiring the Λ-variation resulting

†
Position vector is given by r = (x1, x2, x3), and time by t = x0.

Uniform state of a fluid is described by two parameters of thermody-
namic variables such as fluid density ρ, pressure p, specific internal energy
ϵ (i.e. per unit mass), specific entropy s or specific enthalpy h.

from arbitrary variational transformationXk → Xk+δXk

to vanish, i.e. δΛ = 0:

(Lexp)k ≡ ∂

∂αµ

( ∂Λ

∂Xk
µ

)
− ∂Λ

∂Xk
= 0; k = 1, 2, 3. (4)

This is obtained under vanishing conditions of boundary
values. One can define an energy-momentum tensor T ν

µ by

T ν
µ ≡ Xk

µ

( ∂Λ

∂Xk
ν

)
− Λ δνµ . (5)

Fluid is assumed incompressible: det(Xk
l ) = 1. Taking

simple variation of Λ (without boundary consideration and
using ∂ν ≡ ∂/∂αν), we obtain the following equality,3, 22)[

Lexp]k δX
k = [∂νT

ν
µ ] δX

µ,

which vanishes by (4). This is the Noether’s theorem3).
Namely, if the equation (4) is satisfied, we obtain the con-
servation law, ∂νT ν

µ = 0. This yields four conserva-
tion equations of energy (µ = 0) and momentum compo-
nents (µ = 1, 2, 3). This is a Mechanics version of ”Sym-

metries (i.e. invariances of Λ) imply conservation laws”,
noted in the Introduction. In this Lagrangian description,
the mass conservation law is simply ∂t(dVα) = 0 where
dVα ≡ dα1dα2dα3.

The variational principle with the Eulerian description

yields the following Euler-Lagrange equation (§7.5, Ref.17)) :

∂

∂t

( ∂Λ
∂vk

)
+

∂

∂xl
(
vl
∂Λ

∂vk
)
+

∂

∂xk
(
Λ− ρ

∂Λ

∂ρ

)
= 0. (6)

Euler’s equation of motion results from this, as follows:

∂tv + (v · ∇)v + ρ−1∇ p = 0. (7)

The mass conservation (1) must be added as a constraint.

3.2 Sound waves and vortex sound

Consider an inviscid flow generated by localized vortic-
ity in unbounded fluid of uniform density ρ0 and uniform
entropy s0 with the sound speed c0. Sound speed is defined
by cs = [dp/dρ]1/2 where the pressure is p = p(ρ, s0) =

p(ρ), and ρ−1∇ p = ∇h since (1/ρ)dp = dh−Tds = dh.
Note the identity: (v · ∇)v ≡ ∇ 1

2
v2 + ω × v.

Now, one can define two vector fields E and H by

E ≡ −∂tv −∇hs, H ≡ ω = ∇× v, (8)

where hs ≡ h+ 1
2
v2. The variables v and hs are analogous

to the vector potential and scalar potential of electromag-
netism. From these definitions of E and H only, following
fluid Maxwell equations are derived immediately:

∇ ·H = 0, ∇×E + ∂tH = 0 , (9a, b)

∇ ·E = q, c 20 ∇×H − ∂tE = J , (9c, d)
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(Kambe 2010)23), where q = −∂t(∇ · v) − ∇2hs, and
J = ∂2t v+∇∂ths + c 20∇× (∇× v), and the charge con-

servation equation (∂t q + divJ = 0) is easily confirmed.
The equations (9a, ··, 9d) are derived independently of the
continuity (1) and Euler’s equation (7). But, time evolution
of q and J are to be determined by solving those equations.

The Euler equation (7) determines the vector E = ω×v,
expressed by v only since ω = ∇ × v. Using this, the
equation (9b) reduces to the vorticity equation:

∂tω +∇× (ω × v) = 0. (10)

The source term q of (9c) is also given in terms of v:

q = ∇ · (ω × v). (11)

With a representative velocity u, one can define a repre-
sentative Mach number of the flow by M = u/c0 (≪ 1,
assumed). Perturbation waves of small amplitude are gov-
erned by the following wave equation23):

(a−2
0 ∂2t −∇2)h′s = S(x, t), S = ∇ ·E + q′, (12)

where h′s is a small deviation of hs from unperturbed value,
and q′ is a source term of higher order. An equation for the
acoustic pressure p′ is found after some calculus as follows:

(a−2
0 ∂2t −∇2)p′ = ρ0div(ω × v). (13)

The source term on the right ρ0div(ω × v) states that dy-
namical motion of the vorticity ω excites acoustic waves.
The equation (13) is called the equation of vortex sound.24)

Thus, the Euler’s system describes longitudinal waves, ex-
cited by rotational flows, and observed experimentally.

Note that the equation of sound waves was first derived
by L. Euler (1759), just after having propsoed his equa-
tion of fluid motion together with his continuity equation.
He wrote the wave equation in a classic form, ddy/dt2 =

(pa/ρ)(ddy/dx2), where y(x, t) is the displacement of air
particle located at x in undisturbed state and pa the air pres-
sure. This work was inspired by the letter from a young
mathematician Lagrange and his first paper (1759).25)

3.3 Symmetry issues

In §3.1, the governing equations of ideal-fluid flow have
been derived from the invariance of Lagrangian density Λ
with respect to local gauge transformations22) (of three co-
ordinates): Xk → Xk + δXk(αµ). The Λ is also invariant
to time translation. From the four invariances with respect
to four coordinate transformations, four conservation equa-
tions have been derived: one energy equation and three mo-
mentum equations. This is common, whether the motion

is relativistic or non-relativistic. However in the present
non-relativistic case, the mass conservation was a condi-
tion required a priori, while in the relativistic case the mass
conservation expression is swallowed into the energy con-
servation equation as the rest-mass energy change. In other
words, the single energy equation of the relativistic case
splits into two for non-relativistic flows: the mass conser-
vation equation and the energy equation of fluid motion.‡

In the next section, we consider how the mass conservation
law is formulated on the basis of the symmetry concept.

4 Mass conservation and gauge symmetry
Let us introduce a new EM-like field described by 4-

vector potential aµ(xν) = (ϕa, −a) in the 4-space-time
of fluid-flow.¶ In fact, the mass conservation law is closely
associated with the gauge invariance of the new EM-like
field. Let us define one-form A (a gauge field) by

A = aµdx
µ = ϕa dt− axdx− aydy − azdz.

A pair of fluid-EM fields e and b are defined by

e ≡ − ∂ta−∇ϕa , b ≡ ∇× a , (14)

Taking external differential d of A, we obtain the field
strength two-form F = dA =

∑
Fµν dxµ ∧ dxν :

(Fµν ) =


0 e1 e2 e3

−e1 0 −b3 b2
−e2 b3 0 −b1
−e3 −b2 b1 0

 .

where Fµν = ∂µaν−∂νaµ = −Fνµ. Using the field tensor
(Fµν), one can derive fluid Maxwell equations: 2, 26)

dF = d2A = 0, ∂µG
µν = jν , (15)

where jν = (ρ, j) is a current 4-vector.§ The first gives
∇ · b = 0, and ∂tb+∇× e = 0, while the second gives

∇ · d = ρ, −∂td+∇× h = j. (16)

If we make a gauge transformation: A → A′ = A −
dψ (with ψ a scalar function), we find gauge invariance of
Fµν . In fact, by using a′µ = aµ − ∂µψ, we have

F ′
µν = ∂µa

′
ν−∂νa′µ = ∂µ

(
(aν−∂νψ)−∂ν(aµ−∂µψ)

)
= Fµν .

‡This reminds us of a phenomenon of particle physics, that is split-

ting of the unified electroweak-force into electromagnetic force and weak

nuclear-forces, when the temperature drops from the huge temperature in

the early Universe.
¶ EM : Electro-Magnetism. xν = (t, x1, x2, x3) and a =

(a1, a2, a3). External differential d of a scalar field ψ is defined by

dψ = ∂tψ dt+ ∂xψ dx+ ∂yψ dy + ∂zψ dz.
§ (Gµν) is defined with replacing e by −d and b by h from the matrix

(Fµν), where d = εe and h = λ−1b with ε and λ parameters.
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This is equivalent to the well-known gauge transformation
of the Electro-Magnetism:26) ϕa → ϕa − ∂tψ, and a →
a + ∇ψ, and importantly the EM-like fields e and b are
invariant with this transformation. This property owes to
the anti-symmetry of Fµν = ∂µaν − ∂νaµ. The (ρ, j) on
the RHS of (16) are gauge invariant too.

Let us take 4-divergence of the second equation of (15):
0 = ∂ν∂µG

µν = ∂νj
ν . The double differential operation

is symmetric: i.e. ∂ν∂µ = ∂µ∂ν , while the field strength
tensor is anti-symmetric: Gµν = −Gνµ. Hence the total
sum ∂ν∂µG

µν (for µ, ν = 0, · · · , 3) vanishes. Thus we
obtain the conservation equation for the current j = ρv:

∂νj
ν = ∂tρ+ ∂k(ρv)k = ∂tρ+∇ · (ρv) = 0. (17)

The mass conservation property is closely related to the
anti-symmetry of the tensors Fµν = ∂µaν − ∂νaµ, which
assures the gauge invariance of the field strengths (e, b)

and the same invariance of (ρ, j) by (16). Thus, the mass

conservation equation is implied by the gauge invariance.
Note that the first of (16) accommodates a Coulomb-like

force, e = −∇ϕa, which is not external. ¶

5 Combined fields of fluid flow and wavy field

Now, it is proposed2) that our system is a combination
of two fields of fluid flow F and wavy field W (governed
by the fluid Maxwell equations considered in the previous
§4). According to a general principle of theoretical physics,
such a combined field is defined by linear combination of
Lagrangians describing each constituent field.∥

Equivalently, energy-momentum tenor Tαβ
fw of the com-

bined field is linear combination of two tensors, Tαβ
f for

the fluid flow and Tαβ
w for the wavy field. The system is

governed by2)

∂αT
αβ
fw = ∂αT

αβ
f + ∂αT

αβ
w = 0 , (18)

without external excitation. Thus, we obtain the energy
equation of the combined system by setting β = 0 as

∂t
[
ρ
(
1
2v

2 + ϵ
)
+ ẽw

]
+ div

(
qf + qw

)
= 0 , (19)

where ẽw is the energy density of W -field, and qf and qw

are energy fluxes. The momentum equation is given by
∂αT

αk
f + ∂αT

αk
w = 0 (k = 1, 2, 3) for the combined sys-

tem. Its 3-vector form is expressed by

∂t(ρv + g) +∇· (Π+M) = 0 . (20)
¶ The equation (21) includes the force ρe. With a scalar field ϕa =

−gr−1, we have a gravity-like force: −ρ∇ϕa = ρg∇r−1, from ρe.
∥Lagrangian of the wavy field is Λw = − 1

4
FαβG

αβ + jβaβ .

The equation of fluid flow interacting with the wavy field is
represented as ∂αT

αβ
f = − jλ F

λβ
(Ref.[2]. Eq.43). Using

this, the momentum equations for each of the fluid system
and wavy system are written respectively as

∂t(ρv) +∇·Π = F L[a] , (21)

∂tg +∇·M = −F L[a] , (22)

where F L[a] = ρ e+ j × b expressing the Lorentz-force-
like interaction between the two field components, and
Πij = ρvivj + p δij . Likewise, the energy equations for
each fluid and wavy system are given by

∂t
[
ρ
(
1
2v

2 + ϵ
)]

+ div
(
qf

)
= j·e , (23)

∂tẽw + divqw = − j·e . (24)

The fluid internal energy ϵ can vary thermodynamically by
absorbing heat liberated by a dynamical process if a dissi-
pative mechanism is taken into account. If the gauge field
aµ of the W component vanishes, the equations (19) and
(20) reduce to the familiar traditional equations, i.e. the en-
ergy equation and momentum equation of an ordinary fluid.
The wavy field W assures the mass conservation by (17).

6 Concluding remarks

In physics, it is said that symmetries imply conservation
laws. The law of mass conservation is one of the most fun-
damental laws of fluid mechanics. In traditional formula-
tion, no appropriate argument is given about its physical
symmetry with which the mass conservation is concerned.
In this paper, the gauge invariance of the fluid Maxwell
system (in §4) is shown to imply the law of mass conser-
vation. As far as we have a law of current conservation,
mathematics allows transversal wave-fields.

A new formulation of fluid mechanics2) is proposed by
introducing a wavy-field Λw to the flow field Λf , and ap-
plied to turbulent streaky wall flows in the paper [2]. The
details are to be presented at the lecture session. This the-
ory can not only give appropriate description of transversal
wave-field, but also be generalized so as to include a new
dissipation mechanism comparable in magnitude with the
eddy viscosity in turbulence.2) Self-contradiction is not in-
curred by this formulation. This formulation2) implies a
new feature of the wall-bounded turbulence that the total
velocity is expressed by a triple decomposition: (i) mean
velocity Um, (ii) a wavy component uw, and (iii) turbulent
component u′. By taking account of the new mechanism
of high rate of dissipation, the streaky structure of the wall
turbulence is understood as a dissipative structure (by the
paper [2]).
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The vortex  sound  is  a  longitudinal  wave,  while  

the Tollmien-Schlichting wave observed in viscous 
boundary layer flows is a transversal wave.  The 
Euler’s system is fitted to describing longitudinal 
waves. However, it appears that description of 
transversal waves is awkward in the Navier-Stokes 
system from physical point of view, because fluid 
incompressibility is always assumed for the 
analysis of transversal waves. It is expected that 
description of instability waves in viscous flows 
could be improved by the present framework taking 
account of mass conservation and waves. 
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JSFM society.    
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Figure	1:      Joint-Symposium IUGG-IUTAM at Koto in 1966  (52 years ago, from Kobashi [20]). 
( IUGG: International Union of Geodesy and Geophysics;  IUTAM: International Union of Theoretical and Applied 

Mechanics).  In	the	photo, one can recognize (randomly):    H. Görtler,  F.N. Frenkiel, I. Tani, A. Roshko,  A.M. 
Yaglom,  L.S.G. Kovasznay, J.O. Hinze, M.T. Landahl,  S.I. Pai, P.S. Klebanoff,  G.K. Batchelor, M.J. Lighthill, 

P.G. Saffman,   L.G. Loitsianski,  R. Betchov, D.J. ,Benney, J. Laufer, and many Japanese participants. 


