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Lagrange 1760 and the slow birth of weak solutions

® As shown by D’Alembert, the vibrating string (wave) equation
O01:& = 0,2& has the general solution & = f(x —t) + g(x + t),

where f and g are arbitrary. SIS

® But what does this mean if the functions f and g are, say, discontinuous?

® Nowadays, we handle such a problem, using a distributional approach:
® We take a test function p(x,t), which is very smooth in both x and ¢

® We multiply the wave equation by ¢, integrate over x and ¢ and perform
various integrations by parts, to obtain

/dx/dt§ (O¢ep — Ozzp) = 0.

® This is, by definition, the weak formulation ot the wave equation.

® This is roughly what Lagrange did in 1760/1761, except that his test function
¢ depended only on x and he could not eliminate 0;&.

@ Leray was the first to use the full space-time procedure on NS in 1934.



Onsager 1949 and anomalous dissipation

@® In the twenties, Richardson, in his famous cascade poem (...and so on to viscosity)
implicitly assumed a finite energy dissipation for NS in the limit v — 0.

@ In the early forties, Kolmogorov assumed a finite positive energy dissipation as v — 0.
'This was confirmed experimentally by Sreenivasan (1998) and
numerically by Kaneda, Ishihara, Yokokawa, Itakura (2003).]

® Since the dissipation v / dx |Vv|? is proportional to the viscosity,

this is called anomalous dissipation.
@ In the late forties, Onsager suspected that viscosity is not needed to obtain anomalous
dissipation. Hence, one can just work with non-smooth solutions of the Euler equation.

@ [n 1949 Onsager stated that energy is conserved if the solution satisfies the condition
that velocity increments over a small distance r are bounded by (const) r® with a > 1/3.

® But for a < 1/3, Onsager stated that in principle, turbulent dissipation as described
could take place just as readily without the final assistance of viscosity.

It took nearly seventy years to prove this.



Scale invariance vs intermittency

@ The Euler equation has a large set of invariance groups. Among these are the scaling groups
r — dx, v— Nw, t— A" for arbitrary real h and positive A.

@ The Kolmogorov 1941 (K41) theory essentially assumes that, at infinite Reynolds numbers, statistical
scale invariance holds. The scale-independence of the mean energy flux, then requires h = 1/3.

@ As a consequence, structure functions S,(£) = (d|v(¢)|”) satisty
S, () oc £5 with ¢, = p/3.

@ Experimental and numerical evidence indicates that scale invariance is actually broken. The structure
functions are indeed power laws in the ¢, but the scaling exponent (, is not a linear function of p.
This suggests that the small-scale intermittency is fractal, as proposed by Mandelbrot, or even
multifractal, as proposed by Parisi and Frisch.

\ As a consequence, structure functions S,(£) = (d|v(¢)|P satisty
- 5, Splb) o £ with ¢, = p/3.
3 - w\lgml Simple phenomenological models of intermittency have been
5 proposed, such as the S-model and the random S-model.
21 A However, it has never been shown that the FEuler equation
N a possesses actually fractal/multifractal solutions.




| he mathematical and numerical construction or weak
solutions (self-similar and beyond): the actors

@ FKifties - eighties: the forefathers
John Forbes Nash Jr. (1928 — 2015), Princeton. Isometric embedding theorem

Misha Gromov. Paris, New York. Convex integration and h-principle for PDEs

® 2007 -2017 Ten years of climbing the Onsager 1/3 peak

The convex integration approach
Camillo De Lellis. Zurich, Princeton Laszlo Székelyhidi. Leipzig

Tristan Buckmaster. New York, Princeton Philip Isett. Princeton, Austin

Sara Daneri. Leipzig, Erlangen Vlad Vicol. Princeton

® 2017 — Numerical implementation and intermittency

Takeshi Matsumoto. Kyoto Luca Biferale. Roma
Greg Eyink. Baltimore Uriel Frisch. Nice
Stefano Modena. Leipzig  + TB, LS



A Nash-type construction of weak Euler solutions
® Goal

Construct in a time interval [0, T] a (non-unique) 27-periodic solution of the 3D Euler
equation, whose velocity is spatially Holder continuous of exponent o < 1/3 and
with a prescribed total energy function E(t):

ov+V-(v®v)=-Vp, V.-v=0 Euler

® An inverse Renormalization Group strategy

with stages Sp, S1, ... 8y, ... adding smaller and smaller-scale motions
2 — 27w/2,— ... = 27 /29 — .. .).This gives rise to the usual Reynolds-

averaged equations for (v), = Xk <2 e'® ® Py, namely

ov,+V (v, ®v) =—-Vp, — V- R, V-v, =0,
Ry ={vQv)g —v3® Y,

Eventually, for ¢ — oo, the Reynolds stresses go (weakly) to zero.

® Each stage consist of three successive steps
o Low-pass filtering step. Take the output of stage (¢ — 1) and apply (- ),-
« FEuler-dynamical step (with gluing)

o Mikado-perturbation step



Euler-dynamical step (with gluing)

@® Irom the previous stage, we have an approximate solution of the Euler equation

that has been low-passed filtered, killing all harmonics with wavenumbers > 29.

We would like to improve this solution by letting it dynamically develop
smaller-scale excitation.

It is clearly enough for this to dynamically evolve the solution for about one small-
scale eddy-turnover time.

How is this done” Roughly, one samples the previous velocity field every turnover time.
Then, one lets it evolve dynamically forward and backwards in time for about 2/3 of an
eddy turnover time. Finally, one interpolates between the velocity fields in

overlapping time intervals (gluing).

Important remark. Although this step involves solving various initial-value problems,
they are always over short time intervals, for which one has good existence, uniqueness

and regularity results. In contrast, the total time interval [0, T'| over which one constructs
the weak solution can be much longer than that of good control over the behaviour of
solutions. Globally we are not solving an initial-value problem, but proceeding teleologically.
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Mikado-perturbation step

@ We begin with a farfetched digression: how does one parallel park a car along the sidewalk
| 4231 of a street between two parked cars, leaving barely more than the space needed?
Basically one wiggles in, performing tiny circular movements of smaller and smaller amplitude.

@ This is roughly how Nash proceeded in his 1954 construction of isometric embeddings: in the
successive stages he added transformations with harmonics of shorter and shorter wavelength.
A similar device is used in the construction of weak Euler solutions: one adds, at stage q,

six tiny cylindrical jets (called Mikados), whose radii vary as 2~ 9. Note that the Reynolds stress
tensor has six independent components. The six Mikado amplitudes can be adjusted to suppress
the Reynolds stress error terms, while bringing the total energy closer to its desired value

dive (W(R.§) ® W(R, §)) =0,
dive W (R, &) =0,

][ W(R.§)dé =0,
s

fw W(R, &) ® W(R, £)dé = R.

(c) Ramen: Dynamically evolved
(a) 1st generation Mikados (b) 2nd generation Mikados Mikados



The slow climb of the Onsager |/3 Peak (¢—4)

@ The convex integration method, of which some highlights have just been described, aims not
just to prove the (week) convergence to a solution of the Euler equation. To prove the
Onsager conjecture we have to show that the solution can have a spatial Holder o exponent
arbitrarily close (below) to 1/3 and an energy that decreases in time. Very tough!

At first they had o < 1/10. Then o < 1/5. Then a < 1/3 but no control over the energy
behaviour.

@ The small-scale flow added at each stage had to be static solutions of the 3D Euler
equation, with preferably few Fourier harmonics. Beltrami flows, such as ABC
seemed plausible candidates. Contrary to Mikados, they are not localised and are unable
to “kill” arbitrary Reynolds stress errors. How to best approximate the temporal dynamics

was also not clear. Hence it took almost ten years until weak solutions with Kolmogorov
1941 /Onsager 1949 scaling were constructed in 2016-2017.

@ The present highlights are of course no substitute for reading the original papers
by Daneri-Székelyhidi (ARMA 2017), Isett (Annals Math. 2018),
Buckmaster-DeLellis-Székelyhidi-Vicol (CPAM, in press). An intermediate version, intended
for fluid dynamicists, will probably be written by UF, TM and LS within 6-12 months.



The construction of weak intermittent solutions
(U. Frisch, L. Székelyhidi, T. Matsumoto, S. Modena and others)

@ There exist a number of phenomenological models that display intermittency (anomalous
scaling of structure functions). They include the S-model, the random S-model, the GOY
(Gledzer-Ohkitani-Yamada) model. None of them is derived from the basic Euler or Navier—
Stokes equations.

@ Superficial inspection ofthe Mikado figures, shown before, suggests that there might
be something fractal there.
However, the rules for scaling down the Mikados from one generation (stage) to the
next one imply that the fraction of Mikado-active fluid is the same in all generations.
This can clearly be modified: we can use the 5 or random ( models to scale down
the diameter of the Mikados by more than the factor two used so far.

@ This opens the interesting possibility of constructing weak solutions of the Euler equation
with bifractal or multifractal scaling. Note that the very concept of multifractality
was born from the attempt to model wind-tunnel data, but has otherwise never been directly
connected to the equations of high-Reynolds number fluid turbulent fluid flow.

® This issue and many more are at the centre of the international project
Stirring the Turbulence Problem, soon too be submitted to the Simons Foundation
(with participants from Brazil, Canada, France, Germany, India, Italy, Japan, UK, USA).






