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Lagrange 1760 and the slow birth of weak solutions

The above diagram represents the first six modes of vibration. I’ll refer to

these as the 1st (or fundamental), 2nd, 3rd, etc. Note the integer sequence (1,
2,  3,  4,  5...)  represented  in  the  overtone  series,  and  that  each  overtone

effectively divides the string length (1/2, 1/3,  1/4, 1/5...).  From this we can

figure  out  where  to  semi-stop  (lightly  touch)  the  string  to  “play  the

harmonic.”

Let’s now see what happens when we do just that. As an example, if we

semi-stop the string at the half-way point, the following modes of vibration

are suppressed.

The supressed modes are, in this case, the odd ones (1st, 3rd, 5th...).  All

these are modes in which the string would have to move at the half-way

point, but which it cannot since we have a finger pressed there.

The resultant vibration of the string is a composite of the following (2nd,

4th, 6th...).
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But what does this mean if the functions f and g are, say, discontinuous?

As shown by D’Alembert, the vibrating string (wave) equation
@tt⇠ = @xx⇠ has the general solution ⇠ = f(x� t) + g(x+ t),
where f and g are arbitrary.

Nowadays, we handle such a problem, using a distributional approach:

We take a test function '(x, t), which is very smooth in both x and t

We multiply the wave equation by ', integrate over x and t and perform
various integrations by parts, to obtain

This is roughly what Lagrange did in 1760/1761, except that his test function
' depended only on x and he could not eliminate @tt⇠.

Leray was the first to use the full space-time procedure on NS in 1934.

•

•
•
•
•

•
•

This is, by definition, the weak formulation of the wave equation.

•

Z
dx

Z
dt ⇠ (@tt'� @xx') = 0.



In the twenties, Richardson, in his famous cascade poem (...and so on to viscosity)
implicitly assumed a finite energy dissipation for NS in the limit ⌫ ! 0.

In the early forties, Kolmogorov assumed a finite positive energy dissipation as ⌫ ! 0.

[This was confirmed experimentally by Sreenivasan (1998) and
numerically by Kaneda, Ishihara, Yokokawa, Itakura (2003).]

Since the dissipation ⌫

Z
dx |rv|2 is proportional to the viscosity,

this is called anomalous dissipation.

In 1949 Onsager stated that energy is conserved if the solution satisfies the condition

that velocity increments over a small distance r are bounded by (const) r↵ with ↵ > 1/3.

It took nearly seventy years to prove this.

•

•

•

•
•
•

In the late forties, Onsager suspected that viscosity is not needed to obtain anomalous
dissipation. Hence, one can just work with non-smooth solutions of the Euler equation.

But for ↵  1/3, Onsager stated that in principle, turbulent dissipation as described
could take place just as readily without the final assistance of viscosity.

Onsager 1949 and anomalous dissipation



Scale invariance vs intermittency

The Euler equation has a large set of invariance groups. Among these are the scaling groups

x ! �x, v ! �hv, t ! �1�ht for arbitrary real h and positive �.
•
•

•

The Kolmogorov 1941 (K41) theory essentially assumes that, at infinite Reynolds numbers, statistical
scale invariance holds. The scale-independence of the mean energy flux, then requires h = 1/3.
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Simple phenomenological models of intermittency have been (1)

proposed, such as the �-model and the random �-model.

However, it has never been shown that the Euler equation

possesses actually fractal/multifractal solutions.

Experimental and numerical evidence indicates that scale invariance is actually broken. The structure
functions are indeed power laws in the `, but the scaling exponent ⇣p is not a linear function of p.
This suggests that the small-scale intermittency is fractal, as proposed by Mandelbrot, or even
multifractal, as proposed by Parisi and Frisch.

As a consequence, structure functions Sp(`) ⌘ h�|v(`)|p satisfy

Sp(`) / `⇣p with ⇣p = p/3.

• As a consequence, structure functions Sp(`) ⌘ h�|v(`)|pi satisfy
Sp(`) / `⇣p with ⇣p = p/3.



The mathematical and numerical construction of weak 
solutions (self-similar and beyond): the actors

•

•

•

Fifties - eighties: the forefathers
John Forbes Nash Jr. (1928 – 2015), Princeton. Isometric embedding theorem

Misha Gromov. Paris, New York. Convex integration and h-principle for PDEs

2007 - 2017 Ten years of climbing the Onsager 1/3 peak 
The convex integration approach

Camillo De Lellis. Zurich, Princeton László Székelyhidi. Leipzig

Tristan Buckmaster. New York, Princeton

Vlad Vicol. Princeton

Philip Isett. Princeton, Austin

Sara Daneri. Leipzig, Erlangen

2017 —  Numerical implementation and intermittency
Takeshi Matsumoto. Kyoto Luca Biferale. Roma

Greg Eyink. Baltimore Uriel Frisch. Nice

+ TB, LSStefano Modena. Leipzig



A Nash-type construction of weak Euler solutions
•

•

•
•

Goal

•

•

Euler-dynamical step (with gluing)

Mikado-perturbation step

Each stage consist of three successive steps

An inverse Renormalization Group strategy

Construct in a time interval [0, T ] a (non-unique) 2⇡-periodic solution of the 3D Euler

equation, whose velocity is spatially Hölder continuous of exponent ↵ < 1/3 and

with a prescribed total energy function E(t):

with stages S0, S1, . . .Sq, . . . adding smaller and smaller-scale motions
(2⇡ ! 2⇡/2,! . . . ! 2⇡/2q ! . . .).This gives rise to the usual Reynolds-

averaged equations for hviq ⌘ ⌃|k|<2qe
ik·xv̂k, namely

@vq +r · (vq ⌦ vq) = �rpq �r ·Rq, r · vq = 0,

Rq ⌘ hv ⌦ viq � vq ⌦ vq

Eventually, for q ! 1, the Reynolds stresses go (weakly) to zero.

@tv +r · (v ⌦ v) = �rp, r · v = 0 Euler

Low-pass filtering step. Take the output of stage (q � 1) and apply h · iq.



Euler-dynamical step (with gluing)

•

•
•

•

From the previous stage, we have an approximate solution of the Euler equation
that has been low-passed filtered, killing all harmonics with wavenumbers � 2q.

We would like to improve this solution by letting it dynamically develop
smaller-scale excitation.

It is clearly enough for this to dynamically evolve the solution for about one small-
scale eddy-turnover time.

目標指向の方法で

Important remark. Although this step involves solving various initial-value problems,
they are always over short time intervals, for which one has good existence, uniqueness
and regularity results. In contrast, the total time interval [0, T ] over which one constructs
the weak solution can be much longer than that of good control over the behaviour of
solutions. Globally we are not solving an initial-value problem, but proceeding teleologically.

How is this done? Roughly, one samples the previous velocity field every turnover time.

Then, one lets it evolve dynamically forward and backwards in time for about 2/3 of an

eddy turnover time. Finally, one interpolates between the velocity fields in

overlapping time intervals (gluing).



Mikado-perturbation step
We begin with a farfetched digression: how does one parallel park a car along the sidewalk
[ ] of a street between two parked cars, leaving barely more than the space needed?
Basically one wiggles in, performing tiny circular movements of smaller and smaller amplitude.

•

• This is roughly how Nash proceeded in his 1954 construction of isometric embeddings: in the
successive stages he added transformations with harmonics of shorter and shorter wavelength.
A similar device is used in the construction of weak Euler solutions: one adds, at stage q,

six tiny cylindrical jets (called Mikados), whose radii vary as 2�q. Note that the Reynolds stress
tensor has six independent components. The six Mikado amplitudes can be adjusted to suppress
the Reynolds stress error terms, while bringing the total energy closer to its desired value

(a) 1st generation Mikados (b) 2nd generation Mikados
(c) Ramen: Dynamically evolved
Mikados

Figure 1: Construction de solutions dissipatives (faibles) des équations d’Euler par insertion d’une hiérarchie de
fins jets cylindriques (Mikados). En réglant le diamètre des Mikados on peut passer de solutions autosimilaires
du type proposées par Kolmogorov en 1941 à des solutions intermittentes (multifractales) plus réalistes.

and Ons49 dissipative anomaly. Actually it took a number of years to find appropriate small-scale structures,
allowing to get arbitrarily close to the Onsager limit (Hölder exponent 1/3 beyond which the dissipative anomaly
disappears. The best structures so far are called Mikados by Daneri and Szekelyhidi (2017), because they are
straight, slender and jetlike. Fig. 1 shows 1st- and 2nd-generation Mikados and a dyamically evolved version of
the 2nd generation.

A particular engaging aspect of the current construction of weak solutions is its flexibility, part of which
emerged already at the Stony Brook meeting. The Mikados can be chosen not only to reproduce K41/Ons49
selfsimilar turbulence, but also to synthesize a large class of turbulent flows, possessing, for example, small-scale
intermittency (spotiness of small-scale activity) and multifractal anomalous scaling (see, e.g., Ref. 4). This will
be discussed later. The remaining few lines of this section should be moved to wherever we give some details
about goal/step 1. This huge playground must of course be explored numerically for testing its consistency with
observed fluid dynamical phenomena,. This includes not only (anomalous) scaling laws, but also checking e.g.,
for the presence of extreme fluid dynamical events, such as fast-swirling mini-tornadoes [here ref. to Douady,
Couder and Brachet 1991].

August 11. This is the point up to which UF has edited the LOI. As we know, Laszlo made some critical
remarks regarding the way admissible solutions were presented. There were also a number of discussions with
Greg and Rahul on power-law forcing, as discussed by Forster-Nelson-Stephen (FNS, 1976), DeDominicis-Martin
(DM, 1979), Mitra-Bec-Pandit-Frisch (MBPF, 2005), on the ensuing symmetry-breaking and on the connection
between power-law forcing and the Kraichnan passive scalar model and, last but not least, on the relation between
power-law forcing and Hairer’s theory of regularity structures. From all this, after more discussions with Takeshi,
emerged the following proposal on how to reorganize the remaining material.

It is proposed to keep the 3-step structure of the project. Step 1, could be titled “The construction of multi-
fractal weak solutions for the Euler equation”, Step 2 “Stochasticity, the invariant measure and its universality”,
Step 3 “Power-law forcing, broken scale-invariance and regularity structures.”

In the previous LOI writeup, Step 1 was somewhat of a put-down. This may be a mistake. First, observe that
multifractal functions and measures were born in 1985 when Parisi and Frisch tried interpreting the Anselmet et
al. experimental wind tunnel data. There have been a number of phenomenological (usually random) models with
multifractal scaling. Their contact to Euler/NS is almost non-existent. What we propose to do is to construct for
the first time multifractal weak solutions of the 3D Euler equation. In a sense, we are bringing multifractals back
home (to fluid dynamics). [of course multifractals have been thriving in dynamical systems (chaotic attractors).]
Perhaps we should pump up step 1 and give some details. also explain that we want to construct multifractal
solutions in the presence of forcing (because this will be needed in Step 2 ). We suppose that the Laszlo et al.’s
procedure can accomodate forcing (e.g.. by using the kicking strategy Kostya, Jeremie and Uriel developed for
Burgers [J. Fluid Mech. 2000, 416-239]). LASZLO: DO YOU AGREE THAT FORCING CAN BE EASILY
HANDLED IN THE CONSTRUCTION OF WEAK SOLUTIONS?

In Step 2, we become statistical. Laszlo observed that universality can only be a property of the invariant
measure. First, this requires justifying a probabilistic treatment. For this, we can point out that, besides the
well-known Poincare-Ruelle-Takens mechanism of chaos by sensitive dependence on initial conditions, there is
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In particular,

[R(aeiλϕ)]α ≤ C
{ 1
λ1−α

∥a∥0 +
1

λN−α
(∥a∥0[∇ϕ]N +[a]N )

+ 1
λN (∥a∥0[∇ϕ]N+α +[a]N+α)

}
. (2.13)

The constant C depends on c0, N ∈ N and α ∈ (0, 1).

Proof. Let a0 = a and

an = −div
(
an−1

∇ϕ

|∇ϕ|2
)
, ∀ n = 1, . . . , N .

It follows by induction on N that

a0eiλϕ =
N−1∑

n=0

div
(an∇ϕ

|∇ϕ|2 e
iλϕ

) 1
(iλ)n+1 + 1

(iλ)N
aN eiλϕ . (2.14)

Moreover, again by induction, for all j = 0, . . . , N we have
[
aN

∇ϕ

|∇ϕ|2
]

s
≤ C( j, N , c0)([a j]N− j+s + ∥a j∥0[∇ϕ]N− j+s). (2.15)

Then, (i) immediately follows.
According to standard Schauder estimates,

[∇u]α ≤ C
1
λ

N−1∑

n=0

1
λn

[an∇ϕ

|∇ϕ|2 e
iλϕ

]

α
+ 1

λN

[
aN eiλϕ

]

α
+

∣∣∣
 
T3

aeiλϕ
∣∣∣ (2.16)

which using (i) and (2.15) gives (i i), as in the proof of Proposition 5.2 in [10]. ⊓(

2.3. Mikado flows

In this section we introduce a new family of periodic stationary solutions of the
Euler equations whose spatial averages will be used to absorb the Reynolds stress
of general subsolutions (see Section 3). In the following S3×3

+ denotes the set of
positive definite symmetric 3 × 3 matrices.

Lemma 2.3. For any compact subset N ⊂⊂ S3×3
+ there exists a smooth vector

field

W : N × T3 → R3, i = 1, 2

such that, for every R ∈ N
{
div ξ (W (R, ξ) ⊗ W (R, ξ)) = 0,

div ξW (R, ξ) = 0,
(2.17)

and  
T3

W (R, ξ) dξ = 0, (2.18)
 
T3

W (R, ξ) ⊗ W (R, ξ) dξ = R. (2.19)

歩道



The slow climb of the Onsager 1/3 Peak (ピーク)

•

•

• The convex integration method, of which some highlights have just been described, aims not
just to prove the (week) convergence to a solution of the Euler equation. To prove the
Onsager conjecture we have to show that the solution can have a spatial Hölder ↵ exponent
arbitrarily close (below) to 1/3 and an energy that decreases in time. Very tough!
At first they had ↵ < 1/10. Then ↵ < 1/5. Then ↵ < 1/3 but no control over the energy
behaviour.

The small-scale flow added at each stage had to be static solutions of the 3D Euler
equation, with preferably few Fourier harmonics. Beltrami flows, such as ABC
seemed plausible candidates. Contrary to Mikados, they are not localised and are unable
to “kill” arbitrary Reynolds stress errors. How to best approximate the temporal dynamics
was also not clear. Hence it took almost ten years until weak solutions with Kolmogorov
1941/Onsager 1949 scaling were constructed in 2016–2017.

The present highlights are of course no substitute for reading the original papers
by Daneri-Székelyhidi (ARMA 2017), Isett (Annals Math. 2018),
Buckmaster-DeLellis-Székelyhidi-Vicol (CPAM, in press). An intermediate version, intended
for fluid dynamicists, will probably be written by UF, TM and LS within 6-12 months.



The construction of weak intermittent solutions
(U. Frisch, L. Székelyhidi, T. Matsumoto, S. Modena  and others)
•

•

•

There exist a number of phenomenological models that display intermittency (anomalous

scaling of structure functions). They include the �-model, the random �-model, the GOY

(Gledzer-Ohkitani-Yamada) model. None of them is derived from the basic Euler or Navier–

Stokes equations.

Superficial inspection ofthe Mikado figures, shown before, suggests that there might
be something fractal there.

However, the rules for scaling down the Mikados from one generation (stage) to the

next one imply that the fraction of Mikado-active fluid is the same in all generations.

This can clearly be modified: we can use the � or random � models to scale down

the diameter of the Mikados by more than the factor two used so far.

• This issue and many more are at the centre of the international project
Stirring the Turbulence Problem, soon too be submitted to the Simons Foundation
(with participants from Brazil, Canada, France, Germany, India, Italy, Japan, UK, USA).

This opens the interesting possibility of constructing weak solutions of the Euler equation
with bifractal or multifractal scaling. Note that the very concept of multifractality
was born from the attempt to model wind-tunnel data, but has otherwise never been directly
connected to the equations of high-Reynolds number fluid turbulent fluid flow.




