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Transitional turbulence: puffs 

• Reynolds’ original pipe turbulence 
(1883) reports on the transition 

Univ. of 
Manchester 

“Flashes” of turbulence: 

Univ. of Manchester 



Precision measurement of turbulent transition 

Hof et al., PRL 101, 214501 (2008) 

Q: will a puff survive to the end of the pipe? 

Many repetitions  survival probability = P(Re, t) 
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MODEL FOR METASTABLE TURBULENT PUFFS 
& SPATIOTEMPORAL INTERMITTENCY 
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Very complex behavior and we need to understand precisely what happens 
at the transition, and where the DP universality class comes from. 

Shih, Hsieh and Goldenfeld, Nature Physics (2016) 
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Identification of collective modes at 
the laminar-turbulent transition 

To avoid technical approximations, 
we use DNS of Navier-Stokes 



Predator-prey oscillations in pipe flow 
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Simulation based on the open source  

code by Ashley Willis: openpipeflow.org 



1) Anisotropy of turbulence creates Reynolds stress which 

generates the mean velocity in azimuthal direction 

 

2) Mean azimuthal velocity decreases the anisotropy of 

turbulence and thus suppress turbulence 

What drives the zonal flow? 
• Interaction in two fluid model 

– Turbulence, small-scale (k>0) 

– Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence 
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θ ≈ p/2 

Population cycles in a predator-prey system 

p/2 phase shift between prey and predator population 

 

https://interstices.info/jcms/n_49876/des-especes-en-nombre 

Prey Predator Resource 

Persistent oscillations 
+ 

Fluctuations 



Derivation of predator-prey equations 

Zonal flow-turbulence Predator-prey 

Turbulence Zonal flow A = predator  B = prey    
E = food/empty state Vacuum = Laminar flow 



Extinction/decay statistics for 
stochastic predator-prey systems 
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Puff splitting in predator-prey systems 

Puff-splitting in predator-prey ecosystem 
in a pipe geometry 

Puff-splitting in pipe turbulence 

Avila et al., Science (2011) 



Turbulent puff lifetime 

Mean time between puff split events 

Song et al., J. Stat. Mech. 2014(2), P020010 

Avila et al., Science 333, 192 (2011) 
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Extinction in Ecology   =   Death of Turbulence 
 
 



Direct Numerical Simulations 
of Navier-Stokes 

Roadmap: Universality class of laminar-turbulent transition 
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Roadmap: Universality class of laminar-turbulent transition 

http://upload.wikimedia.org/wikipedia/commons/1/11/Bond_Directed_Percolation.svg
http://upload.wikimedia.org/wikipedia/commons/1/1f/Feynmann_Diagram_Gluon_Radiation.svg


Directed percolation & the laminar-
turbulent transition 

• Turbulent regions can spontaneously relaminarize (go into 
an absorbing state). 

• They can also contaminate their neighbourhood with 
turbulence. (Pomeau 1986) 
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Diffusion 

Spatial dimension 
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Directed percolation transition 

• A continuous phase transition occurs at 𝑝𝑐. 

𝜌~ 𝑝 − 𝑝𝑐
𝛽 𝜉⊥~ 𝑝 − 𝑝𝑐

−𝜈⊥  𝜉∥~ 𝑝 − 𝑝𝑐
−𝜈∥ 

Hinrichsen (Adv. in Physics 2000) 

• Phase transition characterized by universal exponents: 
 

Spatial dimension 

Ti
m

e 



Turbulent puff lifetime 

Mean time between puff split events 

Song et al., (2014) Avila et al., (2011) 
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Directed percolation vs. transitional turbulence 
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Sipos and Goldenfeld (2011) Shih and Goldenfeld (in preparation) 
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Directed percolation also has super-
exponential lifetime! 

 
 



Predator-prey & DP: connection? 

• Near the laminar-turbulent transition, two 
important modes behave like predator-prey 

 

• Near the laminar-turbulent transition, lifetime 
statistics grow super-exponentially with Re, 
behaving like directed percolation 

 

• How can both descriptions be valid? 
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Near the extinction 
transition, stochastic 

predator-prey dynamics 
reduces to directed 

percolation 



Direct Numerical Simulations 
of Navier-Stokes 

Summary: universality class of transitional 
turbulence 
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Experimental evidence for  
directed percolation  

in transitional turbulence  
in different flow geometries 



Turbulence and directed percolation 

Lemoult et al., Nature Physics (2016) 

Fluid between concentric 
cylinders, outer one rotating 

Turbulent patches 

Position of turbulent patches changes in time 



Lemoult et al., Nature Physics (2016) 

Turbulence and directed percolation 
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Directed percolation in turbulence and ecology 

Ecology Couette 



Experimental evidence for  
predator-prey dynamics in 

transitional turbulence  



Universal predator-prey behavior 
in transitional turbulence experiments 

• L-H mode transition in fusion plasmas in tokamak 
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T~50ms 

θ ≈ p/2 

Estrada et al. EPL (2012) 

Bardoczi et al.  Phys. Rev E (2012) • 2D magnetized electroconvection 

http://alltheworldstokamaks.wordpress.com/gallery-of-external-views/kstar-completed/ 



Conclusion 
• Transition to pipe turbulence is in the universality class 

of directed percolation, evidenced by: 
– Direct measurement of critical exponents and data 

collapse universal scaling functions in 1D Couette flow 
– DNS of stress-free Waleffe flow in 2D measures critical 

exponents and scaling functions 

• How to derive universality class from hydrodynamics 
– Small-scale turbulence activates large-scale zonal flow 

which suppresses small-scale turbulence 
– Effective theory (“Landau theory”) is stochastic predator-

prey ecosystem 
– Exact mapping: fluctuating predator-prey = Reggeon field 

theory = DP near extinction 

• Super-exponential behavior of lifetime 
– Turbulence/DP/Predator-prey near extinction shows 

superexponential lifetime scaling for decay and splitting of 
puffs 

 



Take-home message 

• The Navier-Stokes equations quantitatively 
obey non-equilibrium statistical mechanics at 
the onset of turbulence 
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