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Two top leaders in Japan around 1960

Prof. Itiro TANI Prof. Isao IMAI
| (out53 (about 45)

Part |l. Pioneers of Fluid Mechanics in Japan at the start of JSFM

Let us see what they studied.



Pioneers at the start of JSSFM (1)

(a) Laminar viscous flow around a circular cylinder

Imai’s asymptotic expression of the stream function:
1

(1 — 26+ o(CpR./T)
T

by I. Imai (1951)

Prof. Imaiin 1959
at his age 45,
During his Lecture

Fig. 4. Flow pattern (R=40).

The set of three works

® provided a strong evidence that NS equation
can describe steady laminar flows at moderate
Reynolds numbers up to about 40,

® provided a stimulating hint for later develop-
ment of the method of Matched Asymptotic
Expansions by Proudman and Pearson (1957),

Kaplun and Lagerstrom (1957).

Visualization in water channel with milk (1956)

Photo 2. (a) E=41.0.




First successful collaborative works
for laminar viscous flows around Re =~ 40

DNS by hand calculator -

at .RE=_,4_0-(/1 //.,/_”’7‘ _"“__——_____TE:-.:

Asymptotic solutionas r — o
- 9)

I. Imai (1951)

Visualization in
a water channel
with milk (1956)




Pioneers at the start of JSFM  (II)

(b) Stability and turbulence

Prof. T. Tatsumi

First study of turbulence
in Japan with
statistical theory

Prof. H. Sato

Experimental study
(first by using hot-wire):
stability, transition and
turbulence (Wind tunnel)

“The theory of decay process of
incompressible isotropic turbulence”
Proc. R. Soc. London A 239 (1957).

“The stability and transition of a two
dimensional jet” J. Fluid Mech., 7 (1960).

\
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® T. Tatsumi & T. Kakutani (1958 ):
Linear stability analysis of
2D Bickley jet
R, = 4.0, a. = 0.2
® T. Tatsumi & K. Gotoh (1960):
Linear stability of free

shear layers _
F1cure 2. Mean-velocity distribution. SLIT 6 mm L, Uy, = 10-0 m/sec.
X is measured from the slit.




Pioneers at the start of JSFM  (I1II)

(c) Streamwise vortices in boundary layer flows

Late Prof. I. Tani
“Boundary-Layer Transition”
Annual Rev. Fluid Mech. vol.1 (1969)

® Tani, [. and Komoda, H.: Boundary-layer transition in the presence
of streamwise vortices, J. Aerospace Sci., 29 (1962).

® Hino, M., Shikata, H. and Nakai, M.: Large eddies in stratified flows,
Congr. Intern. Assoc. Hydraulic Res., XIIth (1967).

At the time of sixties, there was a gap between the observed phenomena of boundary layer transition
to turbulence and the stability study of mainly linear analysis of 2D disturbances. Formation of 3D-
disturbances is required for the flow transition to turbulence in the boundary layer.

Associated with the 3-dimensionality, there was an evidence of streamwise vortices in the
boundary layers. This transition problem was reviewed by the late Professor Itiro Tani (1969), and
studied by Tani & Komoda (1962), collaborating with the late Prof LSG Kovasznay staying in Tokyo.
The vortices cause a redistribution of mean velocity field.

Later, the streak structure in boundary layer flows was interpreted by this mechanism.



Pioneers at the start of JSFM  (IV)

(d) Nonlinear waves

q Prof. H. Hasimoto

| Asoliton
on a vortex filament
b J. Fluid Mech., 51(1972)

.'l

Prof. A. Sakurai

On exact solution of the
blast wave problem,
J. Phys.Soc. Jpn. 10 (1955)

Fluid motion driven by locally concentrated

vorticity can be described by local-induction law.

Hasimoto transformed the law into the
nonlinear Schrédinger equation, and obtained
a soliton solution of a deformed vortex filament.

A blast wave is usually generated as a shock
caused by a powerful explosion such as asuper-
nova or an atomic bomb.

Unlike the sound speed cs, the velocity U
within the blast wave is not constant and always
larger than the sound speed c;.

Certain exact solutions of the blast wave
problem were given by Sakurai for each of
spherical, cylindrical and planar symmetry,
citing G.I. Taylor:

Proc. R. Soc. London A 201 (1950).




1966: IUGG—IUTAM SYMPOSIUM ON BOUNDARY LAYERS AND
TURBULENCE INCLUDING GEOPHYSICAL APPLICATION

L -.:i

Symposium [UGG-IUTM,
iIn 1966 (fifty-two years ago) at Kyoto

IUGG: International Union of Geodesy and Geophysics;
IUTAM: International Union of Theoretical and Applied Mechanics
In the photo, one can recognize (randomly):
H. Goértler, F.N. Frenkiel, I. Tani, A. Roshko, A.M. Yaglom, L.S.G. Kovasznay, J.O. Hinze, M.T. Landahl, S.I. Pai,
P.S. Klebanoff, G.K. Batchelor, M.J. Lighthill, P.G. Saffman, L.G. Loitsianski, R. Betchov, D.J. ,Benney, J. Laufer,
and many Japanese participants..




Batchelor and Tanea

® After the Kyoto conference, George Batchelor visited Fl.U ID > FLUID DYNAMICS
Taneda’s laboratory at the RIAM Institute, Kyushu Univ., and DYNAMICS
got interested in various visualization experiments carried out e
there by S. Taneda (1956), and also by Okabe & Inoue (1960, —
61). He cited a number of photographs of their visualization
in his textbook.

® Taneda was scouted by Prof. Hikoji Yamada to his laboratory
in RIAM (Research Institute for Applied Mechanics).

® Batchelor Prize of IUTAM

Tani and von Karman

® [n 1960, there was IUTA Symp. ’MHD”
at Williamsburg in USA, where there
were several Japanese participants:
Tani, Imai, Tatsumi, Hasimoto and others.

P
i,

® There was Fluid Physics section at JPL of NASA
administrated by Karman at Caltech. Besides its
work in rocket propulsion, they received
Japanese visitors: Tatsumi, Sato, and Komoda.



Partll. New perspectives on mass conservation law

and waves in fluid mechanics

First of all:
We begin with the following recognition:

® Conservation of energy is related to
Time Translation Symmetry (Invariance).
® Fundamental conservation equations of fluid mechanics are derived as
non-relativistic limit from the relativistic fluid mechanics.
® From a single relativistic energy equation, we have two

conservation equations in the non-relativistic limit u?/¢? - 0:

» Energy conservation equation of traditional form
» Continuity equation

® A symmetry implies a conservation law (Noether, 1918).
® Then, we confront unusual situation.
What kind of physical symmetry implies
the Mass Conservation Law ?




The relativistic energy equation can be written in the following way:
[Kambe (2017), citing Landau & Lifshitz (1987), Relativistic Fluid Dynamics ( § 133)]

< Rest mass part of O(c?)

[0¢p + div(pv)] c?
+[ 0:(p(v?/2 + €)) + div(pv(v?/2 + h))|

+ (smaller order terms) = 0

We have

< Flow energy part
o(u?)

at(p(vz/Z + e)) + div(pv(v2/2 + h)) = 0.

d.p + div(pv) =0,

mentioning just

The textbook “Fluid Mechanics ” of Landau & Lifshitz (1987) begins with
the first section “The equation of continuity”, deriving the equation,

one of the fundamental equations of fluid dynamics.




. _ According to Noether (1918),
Symmetries imply conservation laws -- | | TSN RV T E T

Symmetry: Invariance property with respect to transformations.

Lagrangian density: A = A(Xk,XZf) = %X(’)(X(’f — e(X*, Xx[)

Kineticenergy  Internal energy

o = Xt = 0)
0, =(0,0r), k=123; k=9,Xk=0x%/0a*; ©n=0123; k1=1,273

Requiring invariance of A with respect to namel _
local gauge transformation: X% — X% + §x*

(Ideal fluid)

:> Euler-Lagrange equation | [Leq] = 0
is derived:



. _ According to Noether (1918),
Symmetries imply conservation laws -- | | TSN RV T E T

Lagrangian density: A = A(X*, X)) = %X(’fX(’f — e(X*, x[) (Ideal fluid)

(X )
Incompressibility condition A =1
2 Euler-Lagrange equation e ], = (axk) axk =0

Taking simple variation of A without vanishing boundary values

oA\ A | Q
[aﬂ ( k) _ an 5Xk — [avT;y ] SxXH ThlS IS the
Xy Noether theorem.
Thus a symmetry [£Leq], =

implies a conservation law: oyT, =0
SA = 0 Is not assumed here, since 6A = d,A 6X*

where TV = Xk OA lA 51/ : Energy-Momentum tensor
U K \gxk

v




Fluid-Flow Energy —-Momentum tensor
T%= 2pv* + pe
Tk = p p¥ (§+h) = qf

T0k= p Uk
Hik= pvivk + p Sik

Conservation of Energy and momentum:

9 anﬂ — 0 | . Oy=0/0x, k=123 .
$=0. oo et o) +ouab) =0

Mass conservation law:

0¢p + O [pv*] = 0. This is valid, a priori.




Relativistic Energy—Momentum tensor for fluid-flow

T =2pv? + pe + p c*
T* = ¢ 1gF + cpv¥
TO% = c1qf + cpv*

k= pvivk +p §ik
t = 1t=ct

Hk — a/axk, k = 1,2,3

=  2[d,p+0i(pv")] + | dclp (0% + €)} + dilp v* (Zen)}| =0

=1

0(c?)

ap + ak(ka) =0

o(u?)

This was neglected in Landau & Lifshitz (Fluid M.)
because this is nothing but the continuity equation.

0t{p %‘Dz + e)} + ak {p vk (772_2+h)} =0 Energy equation of

non-relativistic fluid-flow




Relativistic momentumv equation

v =123 =1:
% d,(cpv*) +% d;(c7qf) + 9, 1™ = 0.

= at[p vi] + 0, [T + clz d; (q’;) = 0.




Mass conservation and Gauge symmetry |

® The mass conservation law is a law, independent of coordinate frames.

® Torepresentit, a frame-independent formulation using differential
forms is most appropriate,

® and introduce anew field af of 4-vector potential
aﬂ(xv) — (¢al —a,, —ay, _a3) = guBaBJ
Jap = diag(+1,—-1,—-1,-1)
in the 4-space-time x¥ = (t,x1, x2,x3) of fluid flow.
® Let us define one-form A™ (a gauge field) by

AD = g dx* = padt — aydx? — aydx? — azdx®

® This can lead to a gauge-invariant representation of governing equations.




Mass conservation law and gauge symmetry i

Taking exte(rzn)a.l dlffe.erentlal, F@ = g4® = Z Fp dx* A dx”
two-form F'“’ is defined by
0 e1 e, e3

where
e=—-0.a— Vo, = (a;.a, a3)
b=VXxa= (bl.bz,b3)

Taking external differential again, First pair of Maxwell-type equations are given
as Identities derived from the differential form:

Eq.(I): dF® =d?4% =0 (Identity).

— V’b=0, atb‘l‘ VX8=O

First pair of Maxwell-type equations.



Second pair of Maxwell-type equations

Second pair of Maxwell-type equations are derived from the Lagrangian by the
variational principle, and represented as

Eq. (I):  9,G*" =%, J' = (p- j4j% %)

v-d=np, —d,d+ VXh=]j

d = ce, h=0"1b
with €, o parameters

Gauge transformation: a, — a;l =a,— 04,9
(6= Ad,ay — d,a',] = A9, (ay—d) — 8, (a, — )] = G

Invariant !!



Lagrangian, Noether’s theorem,
Gauge invariance, and Mass conservation law

granglan o - f dV* A(ag.d,ag) "

A= —Z aﬁGaB —j'Ba'g

Variation:

We have the Noether’s theorem for this Mawell-type system too.

The theorem does not necessarily apply to systems that cannot be
modeled with a Lagrangian alone.




Gauge invariance implies the mass conservation equation

L= [V Aag0eap)

A= _l aﬁGaﬁ —jﬁaﬁ Metric tensor:

4 gy = diag(+1,—-1,-1,-1)
=L (e,e) — 1u~* (b,b) — pdq + j*ay ap = gpa a°

Another form of equivalent variational formulation:

SA dV* = (M} g, 6a¥ ) dV*  av* = dt Adx! Adx? A dx®

M/ =(V-d-—p, —0,d+VXxh—j)

M,,” = 0 for arbitrary variation da, — MH”= 0. (Maxwell’s second pair)

Vid=p, —-0,d+VXh=j

Next, we consider its Gauge Invariance.



Gauge invariance implies the mass conservation equation

L, = Jd]}‘L A(aﬁ.aaaﬁ) Metric tensor:

gy = diag(+1,-1,-1,-1)
A = (e,€) —2u~ (b,b) — p, + ja ag = gpa a®

- av* = dt Adx® A dx? Adx3
SAdV* = (M,* g,y 8" ) dV*
MFt=(V-d-p, —0,d+VXh—j)

o g . . for arbitrary scalar
Variation of the gauge field a,,: SR MECE MY field )

6GA dv4- Mll'f SGal,l dv4- (a M ) 1/) dV4 ( vanishing

boundary values)

Gauge Invariance Mass conservation law
no_ .

6611 =0 -




Electromagnetism from Clasical Theory of Fields:

Landau and Lifshitz (1975), at a footnote in § 18 (Gauge invariance)

The gauge invariance is related to the assumed constancy of the electric

charge e. Thus, the gauge invariance of the equations of electrodynamics
and the conservation of charge are closely related to one another.
Commented already 40 years ago !!

A transformation which alters non-observable properties of fields (e.g. potentials) without changing
the physically-meaningful measurable magnitudes (e.g. intensities).

. We may rephrase this to our system of

The new fields (e, b) are derived from the gauge potential a,, (x").

The gauge-invariance of (e, b) field implies the mass conservation law.
This is another example of Noether’s theorem.
Conversely, the Mass Conservation law implies

Existence of new gauge-invariant fields (e, b) .

This is one of the propositions of the present work.



Total Field =  (Fluid-flow field F)

+ (Wavy Field W)

According to a general principle of theoretical physics, the combined field is defined
by linear combination of Lagrangians describing each constituent field.
T. Kambe (2017): New scenario of turbulence theory and wall-bounded turbulence:
theoretical significance” Geophys. Astrophys. Fluid Dyn. Vol.111, 448-507.
Defining the Energy-Momentum tensor of the total system witk 72 = 7% 4 1.2°
the system is governed by

0, T = 0,TF +0,TeF =0

F=0 0[p(Gv2+e) +&w] + V- (g + qw) =0

Total energy Energy fluxes
densities

=123 O pv+gl+ V-(I+M)=0

Total momentum

e Stress tensors
densities



Momentum equations for each component

oelov) £ V-1l o]

pe +jxb =pf;

W-field acts on F-field
with a force Fp[a],
While the F-field reacts
backto the W-field with
a reaction force —F[a].




Energy equations for each component

. . 1 =
F - Field: at [p(§v2+e)] t+ V- 4 =] " € When the W-field loses
j-e (> 0),thenthe

W - Field: d:é, +V-q, F-field gains the same

amount of energy. If the lost

= 1 2 - energy was dissipative, the
qs= pv(Gv° + h) heat energy should be
absorbed as internal energy,

5 _ 1
éw= (e -d+h-b) resulting in Entropy increase.




Current flux and assumed dissipation

Energy flux was a linear combination of g and q.,.
Likewise, current flux is represented as  j = j¢ + j.. - fr=e+plixhb

i = 0fL ~ jp = ge_(assumed)
Rate of dissipation due to W-field: WD-effect

Qw = Jjw '€ = Qtzljd|2/0->O

Entro S increases by the heat released: Ds
> Y pT — = Qvis + Qwp

Dt

Viscous dissipation:

2 2
Vi [0V | Ovg u ovi _
Qvis = P > ( + ) ~ PV (E) for ax; 0

Dissipation due to WD-effect

Vi ~ Csly: molecular viscosity

2
— 7 uD Vpn~C d l'k dd . .
Qwp =Jjw* € ~PVp (_) D~ ¢tCw like an eddy viscosity




Conceptual diagram, showing

streaky structure of wall-bounded turbulence is

a dissipative structure
Main basic wall flow D

Kambe (2017)

wave equation energy equation

2
(72~ o) e=ud(pv) +uodse

—w + div(exh) =—e-j.—e-ja

< Energy Unstable
Wavy field a Streaky structure
Wavy disturbance >

NS[‘U] = _fL[ al

pe——— mmm = . = =
I

| Color-picture inset: Thanks to
Monty, Stewart, Williams,
and Chong: ‘“Large-scale

. features in turbulent pipe and
There is energy flux through the structure || - flow”,

from main flow to heat, JFM. 589 (2010), 147-156.
whereas the structure is maintained.

Dissipative structure




Comparison of WD-effect and viscosity
Rate of Dissipation

— L2111 2. 2
Qwp = jw e ~ —|jpl® ==p“up” ~

Jw = Jp = pup ~oe, e NaD/TD; o~ pPTp pdw/ct

¢, +Wave speed d,, : Wave’s damping distance
(transversal) =, " . wave’s damping time

Eddy viscosity of WD-effect
Vp = Cid,, ~(50 %) X (60 cm) ~ 103 cgs

Estimated from the experiment by Kim & Adrian, Phys. Fluids, 11 (1999) 417, for pipe turbulenceat Re ~ 10°5.

Vim = Cg lm ~ (sound speed)x( mean free pathw—
~(3x10* <2) x (7 x 1076cm) ~ 107 cgs

Molecular viscosity



Mass Conservation Law (d;p + V- j = 0) is represented by new Gauge-
invariant Fields (e, b) as
p=V-(ece), j=—0:(ce) +V x (u™'b).

The Noether’s thorem implies the mass Conservation law.
Conversely, the mass conservation law implies

Existence of new gauge-invariant fields (e, b).

The fluid-flow field is acted on by the gauge field with a Lorentz-like force:
Fila] =pe+jXb, e=-V¢p, —0:a

Gravitational force is implied by the expression V?¢, = C p, with € a constant.

andrepresentedby Fi[a ]| = —pV¢,+ ... .

The energy equation can be generalized to include a dissipation effect by
a dissipative mass-current, jp = ge,
which enables much higher rate of dissipation than the viscous effect.




Concluding Remarks

In Japan, more than fifty years ago, the study field of Fluid Mechanics
did not have a fixed position in the academic community.
® In Physics community, it was regarded as Classical and Applied Mathematics
(sometimes as macroscopic, or phenomenology), while in the Engineering
community, regarded as being too theoretical, or too mathematical.
® This situation was one of the motivations to establish our society JSFM.
® However now, the present speaker believe personally that the Fluid Mechanics
should not be called as classical, but it is one of the simplest models of field
theory of physical systems, because Fluid Mechanics can be described by
Lagrangian functionals which consistent with the gauge theory of theoretical
physics.
® Fluid Mechanics 1s not only based on the field theory of Physics on the
fundamental level, but the fields covered by Fluid Mechanics are diverse:
Geo-spheres, Cosmic-space, engineering technologies, bio-spheres, nano-sphere.
In particular, atmosphere, ocean, climate, and many others.
® New age gives us new challenging problems.
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