

The Japan Society of Fluid Mechanics

50th Anniversary Symposium, Osaka, 4 Sept 2018

Recent advancements towards large-scale flow diagnostics by robotic PIV

Fulvio Scarano

Delft University of Technology, Aerospace Engineering Department **Collaborators**: A. Sciacchitano, C. Jux, J. Schneiders, D. Engler-Faleiros, F. Donker-Duyvis

The need for large-scale aerodynamics

Investigation approaches, from lab scale detail to full scale systems

Civil aviation constantly growing

Novel concepts for personal air mobility

Renewable energy by wind farms

Advanced concepts for green transport

Developments of Laser velocimetry

4-D velocimetry, flow pressure, measurement upscale, versatility

Early, seminal activities in Japan

Art of flow visualisation, large scale flow analysis, from art to measurement science

Ukiyo-e, Hiroshige

1967

航空写真による洪水流の解析 その乱流構造と表面の流れかたの特性について

An Analysis of the Movement of Flood Waters by Aerial Photography, Concerning Characteristics of Turbulence and Surface Flow

Ryosaku Kinoshita

:	相関を利用した流れ場の速度ベクトル分布の画像計測 [†] ――円柱後流の変動渦への適用――			
木 下 良 作*	木 村 一 郎*・高 森 年*・井 上 隆**			
Aerial	Image Processing Instrumentation of Flow Velocity Vector Distribution by Using Correlation Technique ——Application to Vortices in the Wake of a Circular Cylinder——			
	Ichiro KIMURA*, Toshi TAKAMORI* and Takashi INOUE**			
eu Kinoshita				
-				

Summary of PIV'97–Fukui and New Directions in PIV Development 1997

Yamamoto, F.*1 and Kobayashi, T.*2

Outline

3 Dimensionality

Tomographic PIV: working principle Momentum equation => Pressure-from-PIV Fundamental studies in fluid mechanics

Scalability and methods for large-scale experiments

Helium filled soap bubbles for aerodynamics Applications to vertical-axis wind turbine, ground vehicles, ships

Ubiquity and versatility

Coaxial volumetric velocimetry Robotic PIV Applications in aviation and sport aerodynamics

Conclusions and perspectives

Tomographic PIV: working principle

Flow stability and vorticity dynamics

Complex flows: swirling jets (Ianiro et al., JFM 2018)

Pressure from PIV

Surface Pressure Transducers

Pressure from PIV (van Oudheusden, 2013 among others)

$$\nabla p = -\rho \frac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} + \mu \ \nabla^2 \mathbf{u} \quad \Longrightarrow \quad \nabla^2 p = \nabla \cdot (\nabla p) = \nabla \cdot \left(-\rho \frac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} + \mu \ \nabla^2 \mathbf{u}\right)$$

Time-resolved volumetric measurements required

Mounted Cylinder Experiment (Schneiders and Scarano, 2016)

Experiment Setup

Recording at 2 kHz

V _{inf}	5 m/s	
Re_{D}	3.6×10^{4}	
D	10 cm	
Н	10 cm	

Seeding	Helium-Filled Soap Bubbles (0.5 mm)
Illumination	Quantronix Darwin-Duo Nd:YLF (2 x 25 mJ @ 1 kHz)
Imaging	4 x Photron Fast CAM SA1 CMOS, 1024x1024 px
Objectives	4 x 105-mm Nikkor, f/16
Acq. frequency	2,000 Hz

Surface pressure

Comparison between transducers and Pressure-from-PIV

Experiment scalability: how to get there

3 cm

Turbulent BL Elsinga et al (2007)

Shock wave - BL interaction Humble et al (2007)

Surface-Mounted Cylinder Hain et al. (2008)

Typical measurement volume for time-resolved tomo-PIV $\sim 20 \text{ cm}^3$

Large-Volume Tomographic PIV

Large-Volume Tomographic PIV

Fog or oil droplets

- 1 μm diameter
- 2 µs response time

Particle-Image peak intensity

\mathbf{I}_{p}	Particle peak intensity	Z ₀	Object distance
J _o	Light pulse energy	d_{τ}	Particle image diameter
Α	Objective aperture	ΔX_0	Laser sheet width
d_p	Particle diameter	ΔZ_0	Laser sheet thickness

Particle time-response

 $\tau_p = d_p^2 \frac{\Delta \rho}{18\mu_f}$

Large-Volume Tomographic PIV

Fog or oil droplets

- 1 µm diameter
- 2 µs response time

HFSB tracers

- 300 μm diameter
- 10 μs response time
- Neutrally buoyant

Large Scale PIV Seeding System

Injection of bubbles in wind tunnel stream

Detail of generator integration

Large scale PIV experiments

Vertical axis wind turbine

Flow visualization education

"hand made" vortex-breakdown

Towards industrial applications ?

...We need a versatile technique that one can setup in less than one hour, perform the measurements over a square meter domain and deliver results within the day. When you have such a technique, you can make me a call or send an e-mail...

Antonello Cogotti, Pininfarina industries

EUROPIV 2 progress meeting ~ 2002 somewhere in Europe

Coaxial Volumetric Velocimetry (Schneiders et al. 2018)

Reducing tomographic angular aperture
Aligning illumination with imaging

Coaxial => compact configuration

- very small aperture
- large range along depth
- varying optical magnification
- rapidly decaying light intensity

Principal features of Coaxial Volumetric Velocimetry

Main idea: 3D velocimeter like a torch light

- 1) CVV : tomographic PIV system at small aperture
- 2) Probe in the flow (robot arm) with a finite depth range (~ 60 cm)
- 3) HFSB needed as flow tracers
- 4) High-speed recording (STB particle tracks analysis)
- 5) Ensemble-averaged velocity on cartesian bins

Tomographic aperture of CVV

- 1) The small aperture entails a large uncertainty along depth \mathcal{E}_{Z}
- 2) Effect is compensated by long particle trajectory with \mathbf{N} frames

Velocity dynamic range

- Consider a particle trajectory Γ
- N sample positions are taken in a time-series of recordings

Velocity dynamic range

- The reconstructed particle positions have large uncertainty along z

Velocity dynamic range

- Polynomial fitting over N points regularizes velocity estimation
- In particular w-component requires sufficiently large N (typ. N~10)

Lynch and Scarano (2013) A high-order time-accurate interrogation method for time-resolved PIV. Meas. Sci. Technol.

Optical configuration of CVV

Conventional tomographic PIV system

Coaxial velocimeter

- Large aperture
- Calibration procedure
- Meas. Domain defined by illumination
- Instantaneous 3D velocity field

- Small aperture + laser optic fiber
- No calibration
- Meas. Domain defined by light decay
- Ensemble-averaged 3D velocity

Aerodynamic survey of full scale cyclist

Dutch cyclist Tom Dumoulin (winner of *Giro d' Italia* 2017)

3D scan of athlete in time-trial position

Large-scale Tomo-PIV

Mannequin replica in wind tunnel

Aerodynamic survey of full scale cyclist

Robotic PIV experimental layout

(Jux et al. 2018)

CVV is manouvered by a collaborative robot arm (UR5)

3D evaluation by robotic scan using CVV

Robot setup and positioning

Detail of leg wake

Cyclist velocity field survey

Building the global velocity field from individual sets (views)

Local measurement 20 liters volume 5,000 recordings (8 s) 150,000 particle tracks

Global measurement 2,000x1,600x700 mm³ 400 views (both sides) 2x2x2 cm³ bin size vector spacing 5 mm 18,000,000 vectors

Extension to industrial wind tunnels (Sciacchitano et al. ISFV 2018)

Global aerodynamic survey of AIRBUS propeller aircraft

Video synthesis* of experiment kindly provided by industrial host DNW

* Time laps

Current trends and developments

TUDelft

Thank you for the attention, and...

