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Direct simulation of gas-liquid two-phase flows with subgrid particles
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A new numerical model for the simulation of interfacial flows with subgrid-scale fluid structures is proposed.
The model can handle two-phase phenomena with both resolved and subgrid length scales, for example, a large
bubble of twenty grid spacing eventually shrinks to one-twentieth. The two-phase flows are modeled in two steps
that treat two different length and time scales. The first Eulerian step deals with the length scale of the grid
spacing and larger. This step is done by solving a hyperbolic system of equations, and numerically solved using an
approximate Riemann solver. The second step, or the subgrid modeling, deals with the subgrid-scale interactions
between two phases inside an interface cell. The subgrid modeling is equivalent to the relaxation procedure used
in two-fluid models. An algebraic analytical solution has been found for the exchange of momentum, volume and
energy to the second-order accuracy for both finite and instantaneous relaxations for materials with any EOS.
The principle of maximum entropy is adopted to find a unique solution for energy exchanges. An interface with
a high density ratio can be resolved sharply without producing non-physical oscillations. This paper focuses on

the basic ideas of the method and 1-D tests.

1. Imntroduction

Interfacial phenomena with disparate or/and evolv-
ing length scales prevail in nature, such as bubble col-
lapsing, fuel atomization, the breakup of water drops,
the evolution of ocean waves, and volcano eruptions.
A collapsing bubble may eventually reduce its original
size to a munute fraction, which may be smaller than
the §rid spacing. For such a problem, the straightfor-
ward method is to use a grid fine enough to resolve all
scales; however the computer time and storage required
can be prohibitive, because the size and the location of
the bubbles are hardly predictable. The motivation of
this work is to develop a numerical technique for the
volume-tracking method that can allow the existence of
subgrid-scale fluid structures, and approximate them to
reasonable accuracy, in addition to resolve large inter-
faces sharply as a sharp interface method.

Consider an interface with the length scale, d, say the
diameter of a spherical particle, or equivalent diameter
if non-spherical. Compared with the grid spacing that
is restricted by computer resources, the length scales
in two-phase phenomena can be generally divided to
three scales, under-resolved (d < Ax), semi-resolved
(d = O(Az)) and resolved (d > Ax) scales. According
to the length scale that can be best modeled, numerical
methods developed for two-phase flows can be divided
to two categories.

The sharp interface method can deal with flows con-
taining particles sufficiently larger than the grid size.
Popular methods under this category include the vol-
ume of fluid (VOF), the level-set, among many oth-
ers. These methods can resolve the interface sharply,
in one or two cells. The VOF method can be formu-
lated conservatively, but the level-set is generally non-
conservative. The treatment for subgrid particles is im-
possible by using up-to-date methods under this cat-
egory. For the simulation of under-resolved particles,
d < Az, the diffuse interface methods (two-fluid mod-
els) are often used. These models assume a local mix-
ture, distinguishing at least the volume fraction of two
phases in a grid cell. Each phase is assumed to have own
pressure and velocity or averaged/relaxed ones. This
approximation allows strong numerical simplicity and
eliminates the explicit treatment for interfaces. De-
pending upon the assumption adopted in such a model,
the number of governing equations can vary from four
to seven for 1-D flows. In practice, these models are
supplemented by instantaneous relaxation or averaging

procedures. This approach can simulate two-phase phe-
nomena with any length scales, but an interface can only
be resolved with a fairly wide stencil. An interface sep-
arating two pure fluids can never be resolved sharply as
it should be.

This work tries to expand the capability of the tradi-
tional volume-tracking method to handle the fluid struc-
ture of semi-resolved scales, which has characteristics of
both resolved and under-resolved length scales. The
method for the tracking of subgrid scale particle has

been reported (), and this paper will focus on the model
to evolve the solutions with subgrid scale fluid struc-
tures.

2. Modeling of two-phase flows with subgrid

fluid structures

Consider a control volume or a cell consisting of two
phases on a fixed Eulerian grid. It interacts with its
neighboring volumes that are occupied by either one
or two phases, and simultaneously the two phases in-
side interact with each other. The former represents
the phenomena with length scales of the grid spacing
and larger, and the latter represents those with subgrid
scales. In this paper, we call the former external interac-
tion, and the latter internal or subgrid interaction. The
basic idea 1s to numerically model these two interactions
in two steps that are solved by different methods, which
are to be discussed in two following sections respectively.

2.1 Modeling of external interactions

The mathematical model for the external interac-
tions consists of a hyperbolic system of eight equa-
tions. Suppose Uy represents the conservative quanti-
ties Uy = (pg, pris, prEx, 1%T) and «ay the volume frac-
tion of phase & in the control volume, for the phase with
a large volume m and the other phase s, the governing
equations for the two phases are as follows,

(asUs)t + (asUsum)w =0 (1)
and for the master phase with the large volume

The equations are solved by the first order Godunov-
type scheme. The pressure and velocity at faces of con-
trol volumes are estimated from the HLLC approximate
Riemann solver between two pure master phases, which
are used to approximate the terms on the RHS. The
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Fig. 1: Interface configurations inside the interface cell

volume fluxes of both fluxes can be calculated by ei-
ther the exact location of the interface if the interface
tracking method is used, or by the volume fraction in
the upstream cell. The details and discussion of these
treatments will be reported in a separate paper.

2.2 Modeling of subgrid interactions

The interactions between two phases are modeled in
this section. Suppose there are N uniformly distributed
phase pairs in the interface cell, as shown in Fig.la, and
every phase pair consists of two phases with the same
quantities (density, pressure, velocity, temperature, vol-
ume fraction) as those defined in the cell.

The subgrid-scale interactions are modeled by two
sets of conservation laws for two respective phases with
interfaces between. In this work, the model is imposed
with the periodic boundary condition, such that the re-
sulting net flux is zero. Consider the left phase in a
phase pair, as shown in Fig.1b, its solution is governed
by both pressure and velocity at left and right bound-
aries, (p~,u™), (p*,ut) respectively. The conservation
laws yield, at the discrete level for the left phase,

(M) =0, (3)

(Myw)e = N(p~ = p*), (4)
(MiEp)e = N(p~u™ —pFut), ()
() = =N(u™ —u), (6)

where M; 1s the mass of the left fluid, satisfying
Ml = plozle = ,0191.

For the right phase, the conservation laws give

(M,); = 0, (7)
(Myuy )y = =N(p~ —pF), (8)
(M, E,)e = =N(p~u~ — ptut), (9)
() = N(u™ —uh). (10)

We shall find an approximate solution to these equa-
tions without recoursing to iterations or local time step-
ping, satisfying following requirements.

(1) The solution at t = At is at least second-order
accurate, or the error is no more than O(At?, Az?);

(2) The solution is valid for N — 4o00;

(3) The solution approaches the pressure and velocity
equilibriums for ¢ — 4o00;

(4) The solution satisfies the entropy inequality.
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2.2.1 Approximations Both velocities and pres-
sures at faces are approximated by using the acoustic
solver,

ut :’a—i—(pl —pr)/(plal+prar); (11)
p+ =p+ §(ul — UT)) (12)
and
U =u— (Pl - Pr)/(Plal + Prar)) (13)
p- =5—5(w —u), (14)
where

= (pragw + prayuy) /[ (prag + pray),

P = Apapr + prarpi) [(prcu + prar),

5= (paprar)/(pra; + pray).

These approximations are valid before the fastest
wave reaches the other side of the phase volume, or
the system of equations should be integrated under the
CFL condition 1f solved explicitly. It is prohibitive for
very small particles. In order to overcome this stiff-
ness, we consider a semi-implicit method, assuming that
the phase quantities are time-dependent functions of
(p1 —pr) and (u;—u,) only. No other empirical assump-
tions are made in finding the solution to the equations.

The solution to the left phase equations is sufficient
because of the conservation. It turns out that every
equation in (4)-(6) can be integrated as an indepen-
dent ODE under the above approximations. Momentum
equation (4) is first solved 1n section 2.2.2, guarantee-
ing that the solution approaches the velocity equilib-
rium. Volume equation (6) is treated in section 2.2.3.
In general, the volume exchange reduces the pressure
difference. Special attention is paid to maintain the
positivity of phase volumes. The energy equation (5)
18 solved based on two other solutions, and treated at
last. The maximum entropy state in the possible solu-
tions is pursued to remove the freedom in determining
the energy flux.

2.2.2 Momentum exchange Consider the mo-
mentum equation for fluid / (4) in this section. Since
no mass transfer between two fluids is considered, M;
remains constant, as seen from (3). The momentum
equation is rewritten as

(w)e = %(p‘ -pt).

Similarly for the right fluid one gets,

(ur)t = -

(W= wr)e = 307 = ),

where
M = (MM,)/(M; + M,). (15)

Approximating the two pressures by using the acoustic
solver, (p~ — pT) = —=25(w — u,), gives

2Ns
(g —up ) = — 7 (w —ur).
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This ordinary differential equation yields

2Ns,

(w —up) = (w — up)oe™ 51 L, (16)

where (u; — u,)o denotes the initial velocity difference
between two fluads. The subscript ¢ is sometimes re-
moved for the sake of clarity, the same for other initial

values. A constant % 18 assumed here. It 1s clear that

the velocity difference will experience exponential decay
with time. The resulting momentum change of the left
fluid 1s,

¢ ¢
Sy, :/0 N(p~ —pt)dt = —2N§/0 (w — up )dt.

(17)
Substituting (16) into (17) leads to the momentum
change for left fluid,

2NF

Satgar = (w = w Yol (e F = 1), (18)
and for right fluid,
éMr’u,« - _JMIUI‘ (19)

It can be readily seen that for ¢ — +o0, the change
of the momentum 1s finite, and the solution monotonely
approaches the velocity equilibrium, as seen from (18).
It 1s therefore valid not only in the early stage of inter-
actions, but also provides a robust long-time solution.

Assuming a constant 5 introduces an error of O(At),
which introduces only an error of O(At?) in the momen-
tum change. The same is held for volume and energy
changes that follow.

2.2.3 Volume exchange The volume equation (6)
will be integrated in this section. Consider the isen-
tropic procedure,

@_ ]\4lal2 dp, M,a?
ase; Q7 aQ, Qz

The pressure difference satisfies, since € + €2, is a con-
stant,

dpe —pr) _ _(Mlalz Mra?) _ _(pla?erra?
s, Q" o Q

)=—¢.

(20)
Using (6), one gets
(m _pr)t =—Ne(u™ - u+)‘

Approximating the velocity difference by the acoustic

solver, (u= —ut) = —m(pl — pr), yields
2N¢e
(e —pr)e = ay—— (o0 = pr)-

The solution to this ODE is, if a constant coefficient is
assumed,

2NEZ

(pr = pr) = (p1 — pr)ge” miterar ', (21)

where (p; — pr)o Is the initial pressure difference. It is
seen that the pressure difference approaches zero mono-
tonely for t, N — 4o0. The change of the pressure
difference satisfies,

__ 2Ne
6(]’1—Pr) = (pl —Pr)o(e Praterar | — 1)‘ (22)
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A simple way to evaluate the volume change of the
left fluid is to integrate the pressure difference,

(5 t + 2N t
—— [ N —u)dt = ———— — py)dt,
o == [ N == o [ )
(23)
thus 5
b, = ——2=2r). (24)

C

which is consistent with (20). It is clear that the choice
of ¢ has a direct impact on the volume change. As seen
from the definition of ¢, it varies with the phase volume,
and even approaches nfinity for either phase volume
being zero. In practice, the negative phase volume may
appear when using a constant ¢. Therefore assuming
constant ¢ is not appropriate for evaluating the volume
change in numerical simulation.

We return to the original ODE (20), and integrate it
directly,

Mlalz Mraf

97 Q-

where €2, has been replaced by Q — €;. Constant Ag
is determined from the initial state, Ag = (o — pr)o —

(pl - pr) = + Ao, (25)

Miai  M,d? . . .
(szz,_ — Ta"—)o‘ After simple algebraic calculations, we

get a parabolic equation for €,
A1Qf — (Mia} + Mya? + QA1) + QMaf =0, (26)

where A1 = (p1 — pr) — Ao. As seen from (25), pressure
difference (p; — p,) = +oo for @ — 0, and (p — p,) —
—oo for € — Q. It is clear then that for any finite
pressure difference (p;— prl), asolution € € (0,) exists.
Thus, the positivity of volume is maintained for ¢, N —
+0o0.

Given a time ¢, pressure difference (p;—p,) is obtained

from (21). The left volume is one root of (26), and then
the volume change is

S, = — (U)o (27)

2.2.4 Enmergy exchange Given momentum and
volume changes, the energy change is evaluated by in-
tegrating (5),

t
M, E, :/ N(p~u™ —ptut)dt,
0

which is further simplified to

t t
0 0
or
JM[E[ - aéM;u; - ﬁéﬂz) (29)

where 4 is the value of @ at ¢/ € [0,1], and p is that of p.
Since both velocity and pressure are relaxed over time,
it 1s nature to expect that they vary within the bounds

U € [Ul;ur] (30)

and
pe [pl;pr]‘ (31)

We shall find a solution within the bounds (30) and
(31) such that energy change dy, g, results in the state
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of maximum entropy in the cell. Consider &3, &5 € [0, 1],
« and p satisfying (30) and (31) are expressed as

= w + & (ur —w),
p=p+ &P —p)-
Substituting them into (29) gives
Op B, = WM, — POy + Xs (32)
where
X = &1 (ur — w)éngu, — E2pr — P1)dg, -

By using the solutions for ., and dg,,

2Ns

(u?“ - ul)(SMzUz = (ul - UT)2M(1 —e M t) >0,

2Ne

—(pr — p)dg, = (pr — 1) (1 — ¢~ Fatera ') [ > 0,

1t 1s clear that

— (pr — P1)dg, -
33)

Now, two parameters, « and p, have been reduced to
one parameter x. In what follows, we shall find x such
that the resulting state in the cell attains the maximum
entropy under the constraint x € [0, Xmax]-

Consider the cell consisting of two mteracting phases.
The cell is regarded as an isolated thermodynamic sys-
tem because of the periodic condition. The entropy in-
equality requests that the total entropy of two phases
is not decreased after the subgrid modeling. Because
the energy change (32) includes all possib%e solutions
resulted from volume and momentum changes in the
subgrid modeling, it is no need to consider intermediate
processes, such as the volume compression /expansion in
pressure relaxation. The construction of the maximum
entropy for the final state 1s sufficient, and it is also
more efficient than treating those changes separately.
Only the process of energy exchange under the constant
volume is considered.

The entropy change should attain the extreme point,
thus x satisfies

X € [O;Xmaw]; Xmaz = (Ur - Ul)(SM;u;

dés _ dési | ddg,
dy — dx = dx

=0, (34)

where dg; and dg, are the entropy change of left and

right phases after energy exchange.
First, we evaluate %. The change of internal energy

follows, for the left phase,

e, = EMu? + (W, — pida, + X)

Iy u
_%Ml(ul + —]ngll L)? (35)
6Ml”l)

= X — (pléﬂl + 2M;
= X_Bb

52 .
where B, = pidg, + TJ\'JI‘W—I:L The entropy change is then

_ 6Miel 1
65; = fO Tlde

5Mzez
= (7 +i Yo + O(6%)]de (36)

_ M e C
= fo My —ﬂ—cvle_i_ede + 0(d?),
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where Cy; = (0e/0T), is the heat capacity of the left
phase under constant volume. The temperature appear-
ing in the denominator has been linearized. Its change
with x satisfies

dJSl Cvl d(SMl e Cvl

= = 37
dx  CuTio +0me,  dx Culio+x— B (37)
Similarly the right phase yields
ds r Cvr
e : (38)
dx Cyrlro— x + By

612\4 U
where B, = pidq, — -t (tr — W) 01,0, -

Substituting (37) and (38) into (34), after a few alge-
braic manipulations, one gets

_ (C’U'I‘T'I‘O + Br)c'ul - (Cvlﬂo - Bl)c'w
A= Cvl + Cv'r ’ (39)

which corresponds to the maximum point since

d265 Cvl CW'
- = 5+ ] < 0.
dX (CvlTlO +x— Bl) (C’U'I‘T’I‘O _X+B?“)

Thus, the energy flux (32) is uniquely determined.

The maximum entropy guarantees the positivity of
temperature in principle. Numerically, for materials
with a constant heat capacity (e.g., perfect gases), the
linearization for temperature adopted in (36) is exact, so
that the positivity of temperature is always preserved.

It is noted that the state of maximum entropy
adopted here does not lead to the temperature equi-
librium in the interface cells in general. The energy
exchange is constrained by (32), which is nonzero only
for mechanical non-equilibrium flows. An interface with
a temperature difference in the equilibriums will not be
affected.

This completes all solutions required for the subgrid
modeling.

3. Numerical tests

3.1 Preliminaries

Numerical model and techniques proposed in previous
sections do not rely on the choice of the equation of state
(EOS). In order to verify the methodology developed,
the calorically perfect gas and water are tested, and
their EOS and sound speed are summarized as following.
The EOS of the perfect gas is given by

p= (7 - 1)p67 (40)
and the sound speed by

c=\/p/p, (41)

where v is the ratio of specific heats, which is 1.4 for
diatomic gases and 1.66 for monoatomic gases.
The water is assumed to follow the Tait equation,

p=Bl(p/p)" = 1]+ A, (42)

where A, B and n are constants, A = 10°Pa, B =
3.31 x 108Pa and n = 7.15. p. is the density of water

under pressure A, taken as 10%kg/m?. The Tait equa-
tion is fitted for experimental data at high pressure and
density. The sound speed can be derived from the Tait
equation,

¢ = (nB/p)" . (43)
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The internal energy follows

Byt  B-A

= ¢, 1
R T P

(44)

where ¢, is the heat capacity of water, 4.2kJ/kg/ K, and
T 1s the temperature.

All data without units are non-dimensionalized by
characteristic quantities, 1m for length, 10° Pa for pres-

sure, 293.0K for temperature, vV RT = 49.36m/s for
velocity, and 20.2ms for time. The numerical solutions
are found in the spatial domain 0 < x < 1 generally
using 100 cells. The Courant number is always taken as
0.8. For each test problem, an initial location of discon-
tinuity, &g, and the output time are selected; these are
stated in the caption of each figure. For comparison,
a numerical solution obtained using ten thousand cells
are plotted as solid lines representing the exact solu-
tions. Note that there are two values of each primitive
quantity in the interface cell in general. Both values
are plotted, and placed at the reconstructed interface
location.

3.2 Interface in a shock-tube problem

An air-helium shock tube problem, containing only
one interface, 1s tested. The interface is resolved by a 1-
D VOF tracking method. Initial conditions on left and
right sides are listed in the table. In this case, the inter-
face moves at a constant speed without interacting with
ambient flows, except the very early stage immediately
after diaphragm rupture.

Tab. 1: Data for the first test for resolved-interfaces

air (1.0, 0.0, 1.0, 1.0)
helium (0.125, 0.0, 0.1,0.0)

(p7u7p7 aair)L
(p)u)p; aair)R

This problem has been tested by various resolved vol-
ume methods. The solution consists of a right traveling
shock, an interface, and left expansion waves, as shown
in Fig. 2a. The flow is subsonic on both sides of the
interface. Velocity and pressure near the interface are
resolved smoothly without generating spurious oscilla-
tions, and agree well with the exact solution. These
pressure and velocity results are not shown in the pa-
per. The volume tracking approach resolves the inter-
face sharply for all N without any numerical fix. The
influence of the number of interfaces is hardly visible
even in the magnified scale as shown in Fig. 2a. It sug-
gests the number of interfaces in the subgrid modeling,
N, has little effect on the interface that 1s not far from
the mechanical equilibriums as expected. This is the
case for most particles that are sufficiently larger than
the grid spacing.

3.3 Problem of bubble collapsing

The bubble collapse is modeled as a high speed water
Jjet impinging on another stationary water column with
an air cavity between. The x — ¢ diagram of this phe-
nomenon is shown in Fig. 3. The water jet of v = 40
(1.97km/s) with its surface initially located at x = 0.4,
moves from left to right, and the stationary water col
umn locates its surface at = 0.6. Their surfaces are
denoted as left and right interfaces in the figure. A 0.2
wide air cavity bubble i1s formed between these two in-
terfaces. Initially, the velocity of the air bubble 1s set
to be zero, and the initial pressure for all phases are
1 (10°Pa). If the deceleration due to air drag was ne-
glected, the water jet would impact on the water column
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Fig. 2: Solutions of an interface in a shock-tube prob-
lem between helium and air for various N, xg = 0.5,
t = 0.15: a) density distribution pressure; (b) magni-
fied view of (a) near the interface.

at ¢ = 0.005, an important time to estimate the size of
the bubble. The air cavity shrinks with the compres-
sion of the left interface that moves almost at a constant
speed before the impact. After the impact, the jet and
the water column attain an equilibrium speed of 20, a
half of the initial jet speed. The bubble cavity eventu-
ally reduces to d = 4.8 x 10, 0.24% of its initial size at
t = 0.006. This simple but challenging case is designed
for accessing the capability of a numerical method for
two-phase flows with a wide range of length scales. It is
very tough for all two phase methods.

The solution at the very early stage is plotted in Fig.
4a. It i1s clear that the pressures in the interface cell are
only slightly affected by the N parameter in the subgrid
modeling after the sudden impact of the water column.
In what follows, N is set to be 0.5.

Solutions at three typical stations before, at and after
the jet impact are investigated, and results are shown in
Figs. 4b-d. The size of the collapsing bubble is about
2em, 0.17cm and 0.048cm respectively. A fixed grid
number of 100 cells is used, and the grid size is thus
lem. The smallest bubble is just about Axz/20. Non-
conservative methods are expected to lose the bubhble
eventually.

The supersonic jet interacts with the air bubble first,
and creates two shock waves. Omne travels to the left
in water, the left-most shock in Fig. 4b, and the other
propagates in air. The shock in air hits the water col-
umn first, creating one reflected shock in the bubble
and one transmitting shock in the water column. It
is seen that there are three shock waves in Fig. 4b.
Two shock waves in water are widely spread mainly
due to the stiffness of Tait EOS and the first-order dis-
cretization. The volume-tracking method resolves well
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Fig. 3: Test of bubble collapse: a water jet of v = 40
(1.97km/s) impacting on a stationary water column
with a 0.2m wide air cavity between. The bubble cavity
eventually reduces to d = 0.48mm at ¢ = 0.006 (121us).

the large-scale phenomena, such as the pressure behind
the reflected shock wave in water.

The shock wave reflected from the right interface
meets the coming left interface, and reflects again. The
shock wave repeatedly reflects inside the air bubble.
Fig. 4c is exactly the instant these reflections prevail,
a truly non-equilibrium flow. The bubble has reduced
to one fifth of the grid size. There are two pressures in
the interface cells. Notice that although the bubble is
smaller than the grid spacing, it lies on a grid line, so
that there are two interface cells.

Fig. 4d shows the results when the bubble has at-
tained the equilibrium state. Pressure and velocity re-
sults agree excellently well with those of the fine grid
solutions. It is seen even for such a small bubble, the
volume-tracking can resolve the density and tempera-
ture reasonably well. We emphasize that this accuracy
is achieved by using a grid twenty times as large as the
bubble after numerous shock interactions.

4, Concluding remarks

The proposed method is also amendable to two and
three dimensions on any structured and unstructured
grids by using the finite volume method. The extension
to multi-dimensions can be straightforwardly done for
the two-fluid model. The only difficulty for the resolved-
volume approach in high dimensions is how to track and

evolve a subgrid particle (1), The onset of defragmen-
tation in shock-water column interaction has been suc-
cessfully investigated (2.

The present model is numerically simple, and phys-
ically valid for equilibrium flows, and non-equilibrium
bubbly flows. The model does not assume the veloc-
1ty slip at volume faces, which remains questionable for
strongly non-equilibrium dusty flows.
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Fig. 4: Test of bubble collapsing: (a) very early stage
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