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有限要素法を用いた自由境界を持つ流れの二次元シミュレーション
Simulation of Flow Problems with Free Boundaries in 2D using the Finite Element Method.
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We simulate flow problems with the Finite Element method for free boundaries whose motion is obtained by time
integration of the surface’s flow velocities. The volume conservation is reasonable, and for the low-viscosity-range,
we obtain good aggreement with the lubrication approximation. For the decay of a square fluid column, we find

that for high viscosity, the corner of the square travels towards the wave front, while for low viscosity, it stays
where it is, consistent with experimental results.

1. Introduction
Many technical problem in the dynamics of complex

fluids, like multi-phase-flow and realistic flow in porous
media and granular materials deal with the interaction
between fluids and interfaces, rather than with the dy-
namics of fluid alone. Our long-term aim is to simulate
multi-phase flow problems in granular materials ”micro-
scopically”, i.e. by simulating the particles individually
as polyhedra via the discrete-element simulation, and
the fluid flow inside the fluid space via the finite element
method. The ”first principles” approach of simulating
the microscopic interactions allows to test the validity
of approximations common in the field.

The implementation of the following algorithms is in
MATLAB1 . We give no CPU-usage data and tim-
ings, as we are more interested to ”get it right” than
”get it fast”. Once we have a satisfying algorithm, we
can focus on the performance optimization. Though we
are aware that this approach may be computationally
costly, the CPU-performance is still increasing exponen-
tially, and with the advent of GPGPU-cards and Multi-
core-PC-processors, it seems that substantial sustained
computing power becomes available in the hands of re-
searchers far away from supercomputing centers with
their cumbersome application procedures. Our inten-
tion is, rather then focusing on massive-parallel imple-
mentations with time-consuming parallelizations, to de-
velop a methodology where we can reduce the degrees of
freedom without lowering the accuracy of the geometri-
cal description, and to use time-integration methods for
which the time-step is only limited by the time-scale of
the physical phenomena, rather than by the lamentable
stability requirements of easy-to implement algorithms.

Fig. 1: Snapshot of a Discrete-Element method for
hexagonal particles with triangular grid in which a
pore-space which could hardly be discretized via a
quadrilateral meshes.

2. Simulation method for the fluid part
Because we would like to run the simulation on ar-

bitrary geometries, especially on pore-spaces which are
a result of the dynamics of granular particles, as well
as the surfaces, Finite Elements (FE) are the method
of choice for the discretization, as they can be used
also with triangular meshes. Meshes in the pore-space
may become arbitrarily small or at least arbitrarily in-
tractable for quadrilateral grids (see Fig. 1), without ac-
tually contributing much to the flow field. Therefore,
we would like not to be limited with our step-size by
the mesh-size due to the Neumann-stability conditions
for explicit integrators, so an implicit integrator seems
preferable. Most of the flow problems involving sus-
pended material will be incompressible, which from the
point of theoretical approaches means that the pres-
sures turn out as Lagrange-multipliers2 which inhibit
the velocities from compressing the fluid. In numerical
analysis, these types of problems are called Differential
Algebraic Equations (DAE) and can be written in the
following form:(
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This is an equation of motion for the masses M, the
Jacobian of the constraints G, the time derivatives of
the velocities u′ and the external forces f, as well as the
Hessian of the constraint (rewritten with some vector
analytical identities) gqq(u, u). The DAE-form for the
Navier-Stokes equation by the FEM-formulation with
Backward-Difference Formula of second order (BDF2)
by Gresho and Sani4 is[
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where M is the mass-matrix of the problem, K is the
stiffness matrix, N is matrix of the non-linear terms,
fn+1 are the external forces , the un+1 are the flow
velocities and the Pn+1 are the pressures. We do not use
any up-winding. Comparison with eq. (1) shows that
the pressures in eq. (2) indeed turn out as the Lagrange
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Fig. 2: Friedrichs-Keller grid (”FEM-grid”) for
P2P1-elements, where the velocities are given at the
sites with the crosses and the circles, and the pressures
are defined on the sites with the crosses only.

parameters. Therefore, instantaneous changes of the
pressure are possible, there is no necessity, as in the case
for the Marker-and-Cell method, for a smooth iteration,
which behaves effectively as an ”equation of motion”
for the pressures and leads to restrictions with respect
to the timestep and the accuracy. Though pressures
which fluctuate strongly are an indication of a too large
timestep, it is reassuring to have method which indicates
too large timesteps without blowing up.

Eq. (2) is implicit, so that the values of the new
timestep n + 1 must be compute via Newton-Raphson
iteration from the previous values, where the ”Matrix”
is the Jacobian of the velocities. Usually we need
about three iteration for fixed boundary conditions. As
the BDF2-method is not self-starting, i.e. at the first
timestep, additionally to the initial conditions data from
”before” the initial conditions are needed, and addition-
ally, consistent initial conditions are needed for the pres-
sure, so that the incompressibility condition is not vio-
lated. Therefore, we start our solution from a station-
ary state, computed via Newton-Raphson iteration for
the stationary Navier-Stokes equation. The approach
of integrating out the time dimension via a solver for
ordinary differential equations (ODE), instead of dis-
cretizing the time direction also via Finite Elements is
sometimes referred to as ”semi-discretization.” For the
spatial discretization, we use P1P2-elements, i.e. the
pressures are approximated with affine elements, while
the velocities are approximated with quadratic elements
(see Fig. 2).

3. Philosophy of the surface modeling
Conventional Eulerian, i.e. grid based approaches

leave the grid ”as it is” and introduce additional data
structures to trace the surface. In the Marker-and-Cell
(MAC) method5, 6, these ”markers” are used to inter-
polate the surface between the grid points for which the
flow is computed. More recent methods solve partial
differential equations to determine the position of the
surface with various approaches (level set method7, vol-
ume of fluid method8, advection equation9). As we have
a Finite Element simulation at hand which allows to re-
structure and re-mesh the grid in every timestep10, we
would rather stick with our FEM-grid without introduc-
ing additional data structures for a variety of reasons:

v v
v

(i−1,j) (i,j)
(i+1,j)

surface

fluid

Fig. 3: Gravity wave and discretization near the surface
(inset) with normal velocities set to zero (circles) and
velocities computed (crosses).

”Economy of thought”: ”Ockham’s razor” is the prin-
ciple that unnecessary principles should not be in-
troduced to solve a problem: When our grid de-
fines the boundary already, why introduce another
”grid” for the boundary. In particular, we are
rather averse to introduce an entity which does not
exist in nature: The fluid surface should also be
its physical boundary, so the surface information
should also be sufficient to model the boundary.

Mechanic Impedance: When we introduce, addition-
ally to the boundary, a geometric entity with which
the fluid interacts, there is a risk that this will alter
the mechanic impedance (the way that mechanic
signal propagate over the boundary, or how they
are reflected there) without the possibility to con-
trol or evaluate this effect.

Practicability: In the future, we want to simulate
porous media with particles and many thousand
fluid interstices etc. Introducing such an immense
number of additional surfaces, including the cor-
responding overlaps or intersections may lead to
non-unique algorithmic choices.

Analogy: Finite Elements methods in structural me-
chanics don’t need additional data structures to de-
scribe the surfaces. So shouldn’t we be able to do
without additional constructs als in fluid modeling?

Another aspect is that our semi-discrete implemen-
tation is already a formulation of the FEM-equations
with ordinary differential equations. Because the FEM-
part of the simulation yields the velocities of the fluid at
every lattice point, we should therefore be able to cal-
culate new positions of the lattice points at the surface,
and use the new position of the lattice points without
any additional data structure. So if the position of the
surface at the discrete timestep t = n would be given
for the lattice site (i, j) as x(i,j)

n , and we had obtained
the velocity by our FEM-procedure on the free surface
as v(i,j)

n (for a sketch, see Fig. 4) we could compute the
new position of the lattice point via an Euler-integration
for a time-step τ as

x(i,j)
n+1 = x(i,j)

n + v(i,j)
n τ. (3)

Of course, due to the bad stability- and accuracy-
properties, it will be advisable to look for ODE-solvers
with better properties. Because we do not want to de-
form our P2P1-elements, we move only the corners of
the triangles and interpolate the center points of the
edges accordingly.

With respect to the boundary conditions one modi-
fication in comparison to conventional fluid simulations
becomes necessary: Imagine a gravity wave (a wave
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Fig. 4: Gravity wave (left) and schematic discretiza-
tion near the surface in the inset, to the right. Grid
points with normal velocities and tangential velocity set
to zero (◦), all velocity components velocities computed
(×) and the grid points with normal velocity set to zero
while the tangential velocity is computed (¤).
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which moves under the influence of gravity, not a os-
cillatory solution of the field equations of general rel-
ativity, of course) in a container of length l and wave
length 2l, with a phase so that the extrema are at the
boundary, see Fig. 4. Obviously, the surface must move
down at the maximum, and must move up at the min-
imum. While the tangential velocities for the elements
on the boundary away from the surface must be set to
0 ”inside” the computational domain, for the element
on the surface the tangential component of the velocity
must be computed, else no movement of the surface of
the boundary is possible. At the same time, the nor-
mal velocity for this element must be zero. In an earlier
stage of the program development, we forgot and ob-
tained curious, elongated triangles. This formulation
with moving elements has the advantage that, as eq. (2)
allows the inclusion of arbitrary external forces fn+1,
additional models for the surface tension can be imple-
mented in Finite-Element formulation, making use of
well-established techniques from structural mechanics
like the beam models and equations.

0 2 4 6 8
0

1

2

3

4

0 2 4 6 8
0

1

2

3

4

0 2 4 6 8
0

1

2

3

4

0 2 4 6 8
0

1

2

3

4

Fig. 5: Snapshots from the time evolution of the grav-
ity wave at the initial condition (t = 0.0, upper left),
(t = 1.2, upper right), t = 3.6 (lower left) and t = 5.6
(lower right).

4. Test implementation for a gravity wave
To test our implementation, we start with the sim-

ulation of an actual gravity wave. First of all, we
want to know how well the volume is conserved for dif-
ferent integrators. We compute the initial stationary
state by setting the pressure at the upper free surface
to zero. The Newton-Iteration for the stationary state
yields the hydrostatic pressure, higher pressures below
the maximum of the wave, and lower pressure of the
minimum. Because we have to make use of the veloci-
ties at the intervals which are determined by our BDF2-
integration of the internal flow, we have the velocity
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Fig. 6: Time evolution of the volume for the integration
with Euler (×) and Adams Bashforth of second order
(◦) for τ = 0.008 and 4760 grid-points. Symbols are not
drawn for every timestep to keep the figure readable.

available only at discrete times, so one-step methods
(Runge-Kutta-type methods which use several function
evaluations per timestep) cannot be implemented. For
the problem in Fig. 5, we tentatively implemented an
Euler-Step, as well as a second order Adams-Bashforth
method (AB2), which computes the positions at the
next timestep n + 1from the current positions xn, the
current velocities vn and the previous velocities vn−1 as

xn+1 = xn + τ

(
3
2
vn − 1

2
vn−1

)
. (4)

As a tentative parameter of the verisimilitude of the
simulation, we take the conservation of the volume. For
our gravity wave, the viscosity was chosen as unity (in
SI-units), the system size width 8 × (average) height
4 (in units of [m]). We prefer to avoid dimensionless
units, because with free surfaces we have not only iner-
tia effects from the flow, but also from the gravity, and
in the future, another scale may enter due to the surface
tension. For easier comparison with the experiment, we
would like to stay with SI-units. The initial pressure
profile we obtained with zero pressure on the surface,
which lead to a hydrostatic pressure distribution, where
the pressure was higher below ”hills”, and lower under
”valleys” of the wave. For the gravity wave in this sec-
tion, the re-meshing is done is such a way that we we
compute the new position of the new mesh points on the
surface. The new position for the the new mesh points
below the surface is chosen in the horizontal direction
vertically below the surface points. The new position in
the vertical direction is computed equidistantly along
the vertical. As can be seen in Fig. 5, the elements at
the left and right boundary are shortened in this pro-
cess, while the elements which are what was initially the
maximum of the wave, are elongated.

As an initial confirmation, we made a test-run with
a flat surface and found that in the absence of the mo-
tion of a surface, the volume is constant. The result for
the volume for τ = 0.008 and a spatial discretization
of Nelem = 4760 elements can be seen in Fig. 6: Obvi-
ously, the volume conservation is better for the higher
integration order integrator. When the motion of the
surfaces slows down, the increase of the error also slows
down. Actually, we have up to now discussed only how
in eqs. (3) and (4) the old velocities to obtain the new
positions, but we have to discuss at which position we
evaluate the velocities. Because we have a Eulerian for-
mulation, we should not just use the old positions at
different timesteps: As the philosophy of our method
is, rather than trace the movement of the lattice points
in a Lagrangian way, just to predict the new position of
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Fig. 7: Time evolution of the volume for the second or-
der Adams Bashforth method with (-) and without (×)
interpolation for stepsize of τ = 0.008 and Nelem = 4760
elements.
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Fig. 8: Time evolution of the volume with AB2 for
the stepsize of τ = 0.008 and different numbers of
mesh points Nelem = 1088 (×), Nelem = 2600 (◦) and
Nelem = 4760 (4).

the surface, we choose for AB2

xn+1 = xn + τ

(
3
2
vn(xn) − 1

2
vn−1(xn)

)
, (5)

i.e. the new position of a grid-point of the surface is
computed from the current position of the grid-point
and the previous flow velocities at the current position.
If at step n − 1 the grid-point was not at xn yet, we
have to obtain it by interpolation. This is easy in our
FEM-formulation if xn is lower than the previous sur-
face height, i.e. if the surface is falling. Unfortunately,
if the surface is rising, we would have to extrapolate to
points where there was no fluid at all, so we have to
abandon the use of eq. (5) and just use the velocities of
the grid point at the previous timestep in AB2,

xn+1 = xn + τ

(
3
2
vn(xn) − 1

2
vn−1(xn−1).

)
. (6)

That our argument about the interpolation is justified
can be seen from Fig. 7: The error in the volume conser-
vation is larger without interpolation, though not sig-
nificantly. So in the following, we will use interpolated
velocities if the surface moves downward. If the sur-
face moves upward, we would need extrapolation, but
we have to decided to do without, as neither is extrapo-
lation an exact science, nor, with respect to the volume
conservation for interpolation, can be expect significant
improvements.

Let us next study the effect of the mesh size for the
conservation of the volume. For the same stepsize of
τ = 0.008, we have investigated meshes with 1088, 2600
and 4760 mesh-points. As can be seen in Fig. 8, the
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Fig. 9: Time evolution of the volume for 4760 elements
and various timesteps for integration with AB2 for (from
below) τ = 0.06 (×), τ = 0.03 (◦), τ = 0.015 (4) and
τ = 0.008 (−).
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Fig. 10: Time evolution of the volume for Nelem = 4760
and stepsize τ = 0.008 for integration with AB2 for a
single (×) and double (©) wave.

accuracy of the volume conservation becomes (as is to
be expected) better with decreasing mesh size, i.e. in-
creasing number of grids. In the next step, we want to
verify the effect of the timestep for a system with 1088
elements. As can be seen in Fig. 9, the improvement
from τ = 0.06 to τ = 0.008 is monotonous. We have to
conclude that the remaining error (the deviation from
32) is rather due to the lattice discretization than due
to the time discretization, especially if we compare with
the result for 4760 grid points in Fig. 8.

According to Panton12 (p. 536), the flow of a gravity
wave must be irrotational. By inspection of the flow
field, we could verify that for various viscosities this
was the case. It would it is now interesting how our
algorithm behaves if we have more wave maxima. For
a system with the same amplitude, but half the wave
length with our highest resolution of Nelem = 4760 and
a stepsize of τ = 0.008, we can see (Fig. 10) that the
error is significantly larger than for a single wave. In
improvement in the accuracy will be only possible with
a smaller mesh-size. Nevertheless, for the time being,
let us stick with the error in the conservation without
any additional tricks like rescaling of elements etc, be-
cause the error in the volume may have its uses, as a
large error may indicate deficiencies in the spatial dis-
cretization. The number of Newton-Raphson iteration
varies between four and two iterations, it depends on
the flow velocities, but not on the resolution of the grid.
Actually, the source of the error in the volume conserva-
tion seems to be largely due to the behavior at the solid
boundary: Fig. 11 shows that the out-most elements on
the surface have a rather weird angle, compared to the
rest of the surface, which is rather smooth.
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Fig. 11: Zoom into the corners of the the snapshots
from the time evolution of the gravity wave with one
(left) and two maxima (right) at t = 1.6.

5. Simulation of the collapse of a water column
Now we can turn to more interesting problems for

the sake of verifying the algorithm. A popular test-
case, especially for Lagrangian (particle-based) methods
is the time evolution of a water-”step”. While bound-
ary conditions are not a great concern for particle meth-
ods, for our FEM-method we have to choose the ”right”
boundary conditions: At every node on the surface, the
pressures are set to zero, at every node which does not
touch a wall, the velocities are computed, and at ev-
ery node which touches a wall, the normal velocities
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Fig. 12: Comparison of time evolution of the advance-
ment of a wave front under the lubrication approxima-
tion with our simulation with large (circles, 400 trian-
gles) and fine (crosses, 3000 triangles) grid for 1/ν = 10
and stepsize τ = 0.01.

are set to zero, and the tangential velocities are com-
puted. (Choosing the pressure hydrostatic on the ver-
tical face of the step would inhibit any evolution, as
the pressure field would be the same as in the presence
of a wall). The next issue concerns the choice of the
grid: Because the deformations are not small, and can-
not only be taken into account by rescaling the grid
in the vertical direction, we have to re-mesh the grid
globally. For this, we use the algorithm which we origi-
nally developed for grains in fluid 13. As it was initially
written for convex domains, some modifications have
become necessary.

Huppert14 derived the time dependence the advance-
ment of the front Z with time t as

Z(t) = 1.411
(

gq3

3ν

)1/5

t1/5 (7)

for an initial area q, gravity g and viscosity ν under
the lubrication approximation, i.e. under the assump-
tion that effects due to surface tension etc. could be
neglected and the height h of the water column is much
smaller than its width l15. Thought the latter assump-
tion is rather problematic in our case, our data in Fig 12
compare rather well with eq. (7) at 1/ν = 10. Changes
of ν over a reasonable range of parameters did not lead
to any changes in the curve. We leave it to the reader
to interpret the good correspondence as either a con-
firmation of our simulation method or the lubrication
approximation. As the agreement with the lubrication
approximation becomes better for larger mesh sizes (cir-
cles in Fig 12) , but the error in the volume in Fig 13
increases up to about 1% for the find grid, and 1.5% for
the rough mesh, it is worth having a look at the actual
wave fronts. We see in Fig. 14 that at t = 8.5[s] the
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Fig. 13: Error in the volume for the collapse of the
squre water column at 1/ν = 10 and stepsize τ = 0.01.
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Fig. 14: Snapshot at t = 8.5[s] for the fine (above) and
rough mesh (below) for the collapse of the squre water
column at 1/ν = 10 and stepsize τ = 0.01.

wavefront looks rather ragged both for fine and rough
meshes. For this, our meshing algorithm responsible
which adds new nodes if the distance between nodes be-
comes larger than 1.5 the choosen characteristic length
for the nodes. It seems that in the next version of the
remeshing algorithm, we also have to take care of the
structure of the flow field. Near the left wall, one can see
that when we supply a good resolution, actually a thin
film develops (Fig. 14, above), while for too rough grids,
(Fig. 14, below), the film is actually cut off, and only a
meniscus remains near the wall. This shape of the fluid
surface is purely an effect of the viscosity, as we have not
yet modeled cohesive or adhesive forces in the simula-
tion. On the one hand, it is conforting to see that we can
run our algorithm both with physically small resolution
(to capture even thin films), or with rough resolution if
we are only interested in a more large scale dynamics.
Certainly is not possible for many algorithms to be run
beyond multiples of the actual resolution, so we con-
sider our implementation as a success (due, probably,
to the stiff BDF2-integrator for the flow field). On the
other hand, we have no error indicator if we are actually
above the resolution scale of physical phenomena, so no
automatic error detection for the spatial resolution is
possible (for the time step, the Newton-iteration does
not converge if the timestep is choosen too large.)

For higher Reynolds numbers, we want to compare
our simulation with experimental data rather than with
other simulations or theories. Especially with the ex-
periment by Martin and Moyce16 is of interest, as these
authors argue that for their dimensions of the vessels,
air resistance and surface tension can be neglected, ex-
actly the conditions which we have in our simulation.

0.10s 0.24s0.074s
Filling
Initial

Fig. 15: Advancing of the fluid front in the experiment
of Martin and Moyce16 for the collapse of a fluid column
of 57 × 57 mm. The line-width is approximately the
width of the shadows in the original frames, graphics
is mirrored compare to Martin and Moyce, because for
the simulation it is more convenient to have the origin
on the left.
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Fig. 16: Time evolution for the fronts in for for the
fine (above) and rough mesh (below) from Fig. 14 for
the collapse of the squre water column at 1/ν = 10 and
stepsize τ = 0.01. The corner travels towards the front.

We have extracted the outlines of the graphics and asso-
ciated them with the corresponding with the time data
data in Fig. 15. In the following, we focus on the shape
for short time scales, which we consider a more mean-
ingful for the verisimilitude of the simulation than the
long-term time evolution, in which geometric details are
smeared out and momentum-conservation and energy-
decay dominate.

What is striking in the high-speed pictures (300
frames/s) of Martin and Moyce16 is, that the initial
sharp step-shape between initial water level and vertical
boundary (dotted oval in Fig. 15) is, within the limits
set by the shadows in the figures, rather well preserved
during the collapse. Moreover, the upper surfaces looses
convexity both on the left and on the right side. The re-
silience of the ”corner” on the right is rather surprising,
not to say counter-intuitive, but as the pressures in up-
per right corner, are negligible, there are no forces which
could cause the decay of the angle. For low inverse vis-
cosity 1/ν = 10 in Fig. 16, the cusp from the initial
square profils traveled fast towards the front. Within
the deadline for this preprint, we were not able to run
the simulation at the necessary inverse viscosity (about
1/ν = 10000), but for the largest inverse viscosities we
could reach ( 1/ν = 500), the cusp indeed stayed where
it was, see Fig. 17 As we have no surface tension imple-
mented, the cusp becomes sharper and sharper, as in
the case of triangular ocean waves above a shear flow,
which also steepen and become sharper until they break.

In the particle-simulations by Koshizuka et al.17, the
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Fig. 17: Time evolution for the fronts in for for the
fine (above) and rough mesh (below) from Fig. 14 for
the collapse of the squre water column at 1/ν = 10 and
stepsize τ = 0.01. The corner travels towards the front.

upper surface of the column is convex, and their ex-
perimental data are not clear enough to determine the
shape of the column. In our simulation, where we start
with a singular surface (the gradient has a jump at the
right corner), it turns out that the singularity is pre-
served. Though there is a certain uncertainty, as we
have to investigate the effects of the grid discretization
in more detail, if we assume that our simulation gives
the correct solution, we have to conclude that such a
singularity in the surface does not vanish on hydrody-
namical grounds, but due to surface tension, which is
not yet implemented in our code.

6. Summary and Conclusions
We have implemented a Finite-Element method with

free surfaces where we integrate out the motion of the
surface elements according to the velocity data obtained
from the FEM-method on the surface. Compared to
conventional efforts, which try to solve partial differen-
tial equations for the motion of the surface, the addi-
tional effort in our method with respect to new data
structures etc. is negligible. The method shows struc-
tures (development of a non-convex horizontal surface)
which is lacking in particle-based simulations for the
same problem. This gives us hope that the method can
be extended (with better re-meshing algorithms and the
inclusion of surface tension) so that it may yield a higher
degree of realism (not to say precision) than other meth-
ods which rely on unphysical surface- or particle dy-
namics. Certainly, the results are affected by remeshing
and mesh refinement, and certainly we could identify a
problem in the remeshing of rapidly advancing fronts.
Beyond that, we want to implement surface tension,
modeled by beam equations for which the curvature is
evaluated at the fluid surface, as well as better gridding
algorithms with a finer mesh towards the surface than
in the bulk of the fluid.
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Fig. 18: Time evolution of the volume for the integra-
tion with Euler (×), Adams Bashforth of second (◦) and
third (full line) order for τ = 0.008. Symbols are not
drawn for every timestep to keep the figure readable.

Appendix: Other Integrators
Beyond AB2, we have implemented a variant of the

third order Adams-Bashforth method (AB3)

xn+1 = xn + τ

(
23
12

vn − 4
3
vn−1 +

5
12

vn−2

)
. (8)

Using at the nth timestep the velocity vn−2 from two
timesteps earlier in eq. (8) may not contribute to the
improvement of the accuracy in the case of strong move-
ment of the surface. We therefore replaced vn−2 by us-
ing the centered-difference formula of the acceleration

an+1 =
vn − vn−2

2τ
, (9)
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which is available as the ”right hand side” from eq. (2)
so that

vn−2 = vn − 2τan+1. (10)

In that case, our variant of the AB3-method looks like

xn+1 = xn + τ

(
7
3
vn − 4

3
vn−1 −

5
6
an−1

)
. (11)

In analogy to eq. (6), we used an−1(xn) if interpola-
tion was possible, and an−1(xn−1) where extrapola-
tion would have become necessary. Initially, the result
looked promising, as can be seen in Fig. 18: The volume
conservation was better than for the first and second or-
der method.

0 1 2 3 4 5
31.994

31.996

31.998

32

32.002

32.004

32.006

32.008

Time

A
re

a

Fig. 19: Time evolution of the volume for 4760 ele-
ments and various timesteps for integration with AB3
for τ = 0.03 (◦) τ = 0.015 (4) τ = 0.008 (−) τ = 0.004
(¤) and τ = 0.002 (¦).

Unfortunately, when we decreased the stepsize, it
turned out that the algorithm did not converge in third
order, but only linearly, as can be seen in Fig. 19. In
principle, numerical algorithms may not converge when
decreasing the timestep due to the fact that a decrease
in timestep, while decreases the discretization error,
but at the same time increases the rounding error (see.
Fig. 20). Nevertheless, in our case, that cannot be the
reason, as AB2 converges without problems with the
same timestep.

Rounding error
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accuracy

accuracy
Worse

Truncation error

�Larger

�

optimal

Total error

o

Error

m1/N +1

      
total number of timesteps N
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Fig. 20: Schematic representation of the numerical error
as a sum of the truncation error and the discretization
error: The smallest timestep does not give the most
accurate result, but there is an optimal timestep.

The introduction of the acceleration an−1 in eq. (10)
instead of vn−2 is not the reason for the loss of accuracy
either: For a time integration of x = −ẍ with ”exact”
input-data, eq. (11) lead to a smaller error than with
eq. (11). In In fact, we had overlooked the fact that for
n-th order integration with Adams-Bashforth, all vari-
ables which enter in the formula must be obtained to n-
th order. If the vi, ai used in eqs. (8,11) are of lower than

third order, so will be the results for the xi. As our ve-
locities and acceleration are only computed up to second
order with our BDF2-integration in eq. (2), we have to
conclude that the third order formula is meaningless and
does not lead to improved accuracy. We could confirm
using manipulated output from the BDF2-integration:
When we intentionally introduced an error there, the
AB3-integration was much more strongly affected than
the AB2-integration.

When we were already about it, we decided to try out
other methods: The midpoint-rule

xn+1 = xn + vnτ + anτ2, (12)

named after the fact that it can be derived from centered
differences which can be derived from eq. (10) . Further,
we wanted to try out the Adams-Moulton-formula in
third order

xn+1 = xn + τ
1
12

(5vn+1 + 8vn − vn−1) . (13)

Because using implicit integrators with the ”new” ve-
locities vn+1 makes the re-computation of the whole
BDF2-step necessary, we tried to avoid this by modi-
fying the Adams-Moulton formula in eq. (13) to an ”ex-
plicit formula” using the centered differences in eq. (10)
for timestep n so that

xn+1 = xn + τ
1
12

(8vn + 10τan + 4vn−1) . (14)

In Fig. 21, we have contrasted the results for different
methods: The only method which gives more accurate
results than AB2 for the timestep used is AB3, and
that only because it is not yet fully converged: With
smaller timestep (necessary for larger velocities and/or
smaller viscosities), its error will become larger than in
Fig. 21, so for our input data (computed with BDF2),
Adams-Bashforth in second order gives the most satis-
fying results.
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Fig. 21: Numerical error in the conservation of the vol-
ume for several methods 4760 mesh points and timestep
τ = 0.008: Euler (×), Midpoint (¤), 2nd Order
Adams-Bashforth (◦), 3rd Order Adams-Bashforth (4)
and 3rd Order Adams-Moulton (−).
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