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In this paper the application of high order Weighted Essentially Nonoscillatory (WENO) reconstruction to the subsonic 

and transonic engineering problems is studied. It is observed the WENO scheme based on the characteristic variable 

has better convergence speed and accuracy than the WENO scheme based on primitive variable. For engineering 

problems with shock of moderate amplitude, a simplified version of the characteristic variable based WENO with 

which the CPU cost overhead can be significantly reduced is developed. Also in this work it is found for viscous case it 

is better to include the viscous effect which is reflected by the modification to a parameter in the WENO reconstruction. 

Numerical results indicate with the use of the simplified characteristic variable based reconstruction and the modified 

parameter, the nonlinear WENO interpolation is sharply activated in the region of shock jump and meanwhile in the 

smooth area the WENO interpolation weights are tuned towards the designed optimal value for better accuracy. Also 

this approach demonstrates better convergence rate than the primitive variable based reconstruction. Several practical 

cases are calculated to demonstrate the accuracy and efficiency of the current methodology. 

 

 

1. Introduction 

It is well known computational fluid dynamics (CFD) offers the 

ability to perform predictions of the full field vehicle flows at low 

cost compared to wind tunnel experiments. While the accurate 

and fast-turnaround simulation still demands new algorithms. Up 

to now, the widely used codes for engineering problems employ 

second-order schemes. Higher order numerical methods, such as 

the Weighted Essentially Nonoscillatory and Discontinuous 

Galerkin (DG), can provide more accurate solutions with fewer 

mesh points. In the higher order schemes, the numerical 

dissipation is reduced and this is one of the key elements of 

accurate capture of detailed flow structures, such as tip vortex and 

shock-vortex interaction. Currently most of the efforts are exerted 

in the application of these methods in the field of high-fidelity 

simulations, such as large eddy simulation (LES) and 

aeroacoustics. While high order schemes are rarely applied to 

engineering problems, such as wing-body and turbomachinery 

cases. Compared to the lower order numerical schemes, high 

accuracy schemes are CPU extensive. Due to the more stencils 

needed for high accuracy and reduced numerical dissipation, 

these methods are always numerically stiff and usually exhibit 

slower convergence speed and reduced stability. 

Of all the high order schemes, Essentially Nonoscillatory (ENO) 

and WENO algorithms can be used to replace the widely used 

Monotone Upwind Scheme for Conservation Laws (MUSCL)
(1)

 

approach in structured codes for more accurate inviscid fluxes. In 

the ENO approach, several candidate reconstruction stencils are 

formed and the nonoscillatory property is achieved by selecting 

the one with maximum smoothness. In this approach the stencil 

interpolated across the discontinuity are never used and the 

oscillations are prevented. Based on the ENO algorithm, Liu et 

al.
(2)

 developed the WENO scheme by the convex combination of 

all the stencils to improve the accuracy. In the WENO algorithm, 

the stencil interpolated across the discontinuity is assigned a near 

zero weight and thus the nonoscillation property is preserved. 

Jiang and Shu
(3)

 further developed the WENO algorithm by 

devising a new set of weights for higher accuracy. Currently the 

WENO algorithm is widely used in the high fidelity simulations. 

Especially in the simulation of shock-turbulence interactions, it 

serves as the building part to capture the shock without dissipating 

the small scale turbulent fluctuations
(4)

. Ren et al.
(5)

 developed a 

Roe type characteristic-wise hybrid compact-WENO scheme in 

which compact difference is used in the smooth regions and the 

WENO scheme is activated near the shock by a weight function. 

Zhang and Shu
(6)

 proposed a new smoothness indicator to 

improve the convergence issue of WENO scheme to steady state.  

Compared to the extensive researches and applications in high 

fidelity simulations, the use of WENO scheme in the engineering 

problems are less studied. Nichols et al.
(7)

 applied the fifth order 

WENO in the NASA OVERFLOW code and tested the scheme 

with problems involving vortical flows, strong shock and large 

scale unsteady flows. The WENO scheme was found to provide 

much lower numerical dissipation and dispersion compared to the 

widely used third order MUSCL reconstruction. Shen et al.
(8)

 

studied the weights stability and accuracy of fifth order WENO 

scheme. It is found the weight of the original WENO scheme may 

lead to oscillation even for smooth flows. According to numerical 

experiments, it is proposed to increase a parameter from  to 

 and the convergence property and the accuracy can be 

significantly improved. 

In this paper the authors are interested in how to efficiently 

apply the WENO reconstruction to engineering problems for better 

accuracy. Also the numerical method should have favorable 

convergence speed for steady state solutions. In the literature
(7,8,9)

, 

for engineering problems using either WENO or MUSCL type 

reconstruction, it is believed there is no need to resort to the 

expensive characteristic variable based reconstruction. While in 

this paper it is found the use of characteristic variable helps to 

improve the accuracy and convergence speed. Also for the 

transonic problems interested in this paper, a simplified version 

can be used to obviously reduce the cost overhead in the 

characteristic variable based approach. The application of WENO 

scheme can be further improved by taking into account of the 

viscous effect. With the use of characteristic variable and the 

consideration of viscous effect, the current implementation tends 

to sharply activate the nonlinear interpolation near the shock for 
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monotone solution. At the same time in the smooth area the 

unnecessary nonlinear interpolation is suppressed. Also the 

current implementation has similar or better convergence rate 

than the primitive variable based WENO. Several practical 

engineering problems are used to validate the accuracy and 

convergence issues of the current method. 

 

2. Numerical methods 

The governing equation can be written in the Cartesian 

coordinate as 

 

in which  denotes the conservative 

variable.  denote the convective fluxes and also include 

viscous fluxes for viscous cases. Also the primitive variable 

 is widely used in this work. The governing 

equation is nondimensionalized with the freestream conditions 

and proper length scale. 

 

Fig. 1  Reconstruction stencils for the fifth order WENO algorithm 

 

The reconstruction of variables with WENO method provides a 

method to achieve higher order accuracy both in the smooth part 

and in the shock part of flow region, compared to the currently 

widely used MUSCL approach. In the WENO method, the 

essentially non-oscillation and high order accuracy properties are 

realized by the convex and nonlinear combination of several low 

order approximations. As demonstrated in Fig. 1, the fifth-order 

accurate WENO reconstruction of  can be written as 

 

where 

 

and the weights are defined as 

 (1) 

. In the above equation, the smoothness indicators  are 

 

and up-to-now the calculation of  is completed and  

can be constructed in the way symmetric to  and will not 

be detailed here. In the shock region, the reconstruction stencil 

across the shock will be assigned a small weight and now the 

interpolation is a nonlinear process. In the smooth area, all the 

weights approach the designed optimal values and linear 

interpolation is used indeed. 

There are several choices of the variable to be reconstructed, 

such as the primitive variable, conservative variable, or the 

characteristic variable. Currently in most of the engineering cases 

using the WENO algorithm, the WENO reconstruction is used 

either to the conservative variables
(8)

, or to the primitive 

variables
(7,9)

. As conservative variable and primitive variable are 

always available in the code and thus these methods are 

straightforward. Another approach is to use the WENO method in 

the characteristic field. Let  be an unit length vector 

of the surface normal, the Jacobian matrix is defined as 

 

, also denotes  and  the right and left eigenmatrix of the 

above matrix, respectively. In the calculation of  and 

, the conservative variables are multiplied by the left 

eigenmatrix  to get the characteristic variables . Then the 

WENO reconstruction is used to calculate  and . 

The last step is the transformation from characteristic variable to 

conservative variable by 

  

. Compared to the methods based on the conservative variable 

and primitive variable, in the characteristic variable based 

approach, the left and right eigenmatrices have to be formed and 

also matrix-vector multiplications are needed. These result in 

obvious CPU cost overhead. Also in the literature it is believed for 

engineering problems with high order reconstructions, such as the 

fifth order WENO scheme, the using of characteristic variable 

does not result in additional gains. As a result it is seldom used in 

engineering problems for these two reasons. 

In the following the characteristic variable will be computed from 

primitive variable, as the transformations are much simplified 

compared to from conservative variable. The governing equation 

can be transformed into 

 

. The Jacobian matrix and the eigenvalue decomposition are 

defined as 

 

. For clarity, two dimensional case will be discussed here. 

Denoting  a unit vector which is perpendicular 

to , the left eigenmatrix can be described in the 

form of 

 

. As shown in Eqn. (1), in the WENO algorithm, the smoothness is 

estimated by the variations of the variables to be reconstructed. 
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Thus looking at the characteristic variable based WENO algorithm, 

 has the form of 

 (2) 

. The first component of  represents the entropy wave 

and the second and the third component represents the 

downstream and upstream propagating pressure wave, 

respectively. The last one represents the shear wave, viz., vorticity. 

Compared to the primitive variable or conservative variable, the 

characteristic variable better reflects the flow features. For 

example in the isentropic flow, . So if characteristic 

variable based WENO reconstruction is used, according to the 

definition of the WENO weights in Eqn. (1), linear interpolation 

instead of the lower order nonlinear interpolation will be used in 

this characteristic field. While for the same case, due to the 

variations of  and , the primitive variable and the conservative 

variable based approaches tend to activate the low order 

nonlinear interpolations despite the shockless flow. 

  

Fig. 2  Case with shock wave 

aligned with the grid 

Fig. 3  Case with shock wave 

not aligned with the grid 

 

Obviously the first three components in Eqn. (2) vary 

significantly across the shock, while the variation of the last 

component is a bit different. As demonstrated in the Fig. 2, in the 

case of the shock wave is aligned with the grid, according to the 

Rankine-Hugoniot conditions, the velocity difference in the 

tangential direction vanishes . Thus the last component 

approaches zero and at least there is no need to use the nonlinear 

WENO interpolation to suppress the spurious oscillation in this 

characteristic field. In the case the shock wave is not aligned with 

the grid lines, as depicted in Fig. 3, the velocity difference 

tangential to the shock wave is zero and does not contribute to 

. Denoting the velocity component normal to the shock wave 

as , in this case  can be expressed as 

 

For the engineering problems interested in this paper, the shock 

wave is of moderate amplitude and according to the 

Rankine-Hugoniot conditions  is a limited value. Also in 

the generation of structured mesh, the mesh lines are always 

positioned to be aligned with the dominate flow features, such as 

shock waves and boundary layers. Thus for high quality mesh  

is always a small angle. So in the case the shock wave is not 

aligned with the grid lines, for transonic flows calculated with 

structured meshes, there is always no need to use the nonlinear 

and also expensive WENO interpolation to the component of the 

characteristic variable corresponding to the vorticity wave. For 

three dimensional problems similar analysis also applies and will 

not be repeated here and in three dimensions the two 

components corresponding to the vorticity waves can be omitted 

in the WENO reconstruction. 

As a result for these cases a simplified version of the 

characteristic variable based WENO reconstruction can be 

introduced. Denoting  as the j-th row of  and  the j-th 

column . For both two and three dimensional problems, the 

nonlinear WENO interpolation is needed only for the first three 

components of characteristic variable, while linear reconstruction 

is used for the remaining part. The reconstruction is executed in 

the following steps: (1). Compute  from  and  

and then calculate . (2). Primitive variable is 

transformed into characteristic form by  

and WENO reconstruction is used to compute  and 

. (3). Denoting the remaining part as 

, linear reconstruction is used for this part. 

For third order accuracy, the reconstruction has the form of 

 

. For fifth order accuracy the reconstruction can be expressed as 

 

(4). The last step is to get  and  by summing up 

the two parts 

 

Compared with the original implementation of characteristic 

variable base WENO reconstruction, the current simplified version 

obviously yields reduced computation cost. As only 

 and  instead of the full matrices 

have to be formed and also the count of matrix-vector 

multiplications used to calculate the characteristic variable has 

been reduced. And also the costly WENO algorithm is needed 

only for the first three components of the characteristic variable, 

instead of all the four components in two dimensions or five 

components in three dimensions. 

For transonic flows in the engineering regime, there is a slightly 

rise of vorticity magnitude across shock wave, while the vorticity 

increases rapidly in the region with high velocity shear, such as in 

the boundary layer and the tip vortex region. The requirement of 

accurate tracking vorticity along long distance is necessary in 

many engineering problems. While due to the inherent numerical 

viscosity in numerical schemes, the vorticity is always dissipated 

much earlier
(9)

. In the current simplified WENO algorithm, linear 

reconstruction is used for the components corresponding to the 

vorticity waves, thus the numerical dissipation is further reduced 

and better accuracy for vortical flows is possible. 
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The WENO reconstruction algorithm computes several 

low-order approximations of  and  and the final 

value is obtained by the weighted summation of all the low-order 

approximations. This process is nonlinear and the weights are 

directly related to the smoothness indicators. As seen in Eqn. (1), 

the weight is determined by the ratio of its smoothness relative to 

the total smoothness. Thus there may be situation in which the 

absolute variation of  is small, while the relative variation of  is 

bigger. In this case the reconstruction stencil with relatively large 

variation will be assigned a small weight, no matter whether the 

shock wave do exists. Also during the transient stage from initial 

solution to the final converged solution, there is always small 

amplitude variation even in the subsonic area, in this case the 

smoothness indicators will work unreasonably and this may hinder 

the time marching towards convergence. According to Eqn. (1), if 

, the weights always approach the designed optimal 

values despites of the smoothness indicators. Thus although the 

small value  in Eqn. (1) is originally designed to avoid the 

denominator from zero, in real-world problems,  acts as a 

threshold to distinguish the acceptable small amplitude variation 

from the shock wave. In the smooth area, it is better to have  on 

the same order or bigger than  so the designed order of 

accuracy can be achieved, while near the shock  should be 

much smaller than  to activate the shock capturing. In the 

original WENO algorithm,  is set to . In the work of Shen et 

al.
(8)

, according to numerical experiments, this value is increased 

to . It is hard to define a value suitable for broad range of 

flows, while it is believed using a bigger  which also does not 

destroy the shock capturing ability is beneficial for both accuracy 

and convergence. Similar as in the work of Shen et al.
(8)

, in this 

paper  is set to . 

Note that for smooth flows  should converge to zero with 

mesh refinement; while for the reconstruction stencil across the 

shock wave,  converges to a finite value with mesh 

refinement. So it is better to have the parameter  to be function 

of the local mesh spacing. For general cases it is a hard job and in 

this work the effect of local mesh spacing is considered in a more 

physical manner. In all the above discussions, only the inviscid 

part in concerned. For viscous flows, the viscosity, including the 

molecular part and the turbulent part, helps to stabilize the 

calculation and smooth the flow field. So taking into account of the 

physical viscosity would better suit the physical process. For 

simplicity, looking at a one dimensional convective-diffusion 

equation 

 

. This equation is semi-discretized as 

 

. Thus a Reynolds number based on the local mesh spacing, 

 can be defined. It can be easily proved if 

, then  will be monotonically increasing or 

decreasing. In this case the viscosity is enough to dissipate the 

unphysical oscillations. Inspired by the analysis, the physical 

viscosity is introduced into the current implementation of WENO 

algorithm by the modification to . First the Reynolds number 

based on the local mesh spacing is computed and if  is 

lower than a pre-defined threshold, the flow region near this part is 

denoted as diffusion-controlled and linear reconstruction instead of 

the WENO algorithm is used. In the current work the threshold 

Reynolds number is taken to be 5. Then for the rest of the domain, 

 is re-defined as 

 

. With the use of , in domains dominated by viscous 

effects, the admissible variations is enlarged and the WENO 

weights tend to the designed optimal value and higher accuracy 

can be achieved. For high Reynolds number flows, at least in the 

viscous sub-layer, no WENO reconstruction is used and 

reconstruction order is forced to be the designed value and this 

would yield better accuracy for the boundary layer and this also 

results in a bit cost saving by the way. In the off-body part of the 

flow, although the turbulent viscosity is much bigger than the 

molecular viscosity, the mesh spacing is much larger, thus in this 

part  is seldom a small value and the physical viscosity 

has limited ability to suppress the oscillations. While on the other 

hand with the development of computation resources, larger scale 

and denser mesh is used to resolve the flow problem, so the 

 is decreasing with denser mesh and physical viscosity 

has increasing capability of suppressing oscillations. It has to be 

noted there maybe a better formulation to bring in the viscous 

effect and the approach in this work is just heuristic.  

With the calculated  and , throughout this 

paper the HLLC Riemann flux
(10)

 is used to compute the inviscid 

flux across the cell interface. For viscous cases, second order 

scheme is used to discrete the viscous term. For turbulent cases, 

the two equation Menter-SST turbulence model
(11)

 is used to 

calculate the turbulent viscosity. Unless otherwise stated, the 

computation throughout this paper is conducted with multiblock 

body-fitted structured mesh and Alternating Direction Implicit (ADI) 

method with three levels of multigrid are used for the time 

integration. 

 

3. Numerical example: NACA 0012 airfoil 

The NACA-0012 airfoil case is solved with the Building Cube 

Method
(12,13)

. In the Building Cube Method block structured 

Cartesian mesh is used to discretize the flow region and all the 

blocks have the same number of points. Ghost cells are used to 

exchange information between neighbor blocks. This test case is 

conducted in the two-dimensional inviscid mode and within the 

current Building Cube Method, ghost cell based Immersed 

Boundary method
(14)

 is used to treat solid walls not aligned with 

the mesh lines. Fifth order WENO method is used for the inviscid 

fluxes. A five stages explicit Runge-Kutta time marching method 

and the Full Approximation Scheme (FAS) type multigrid method 

are used to integrate the governing equation towards 

convergence. 

First the case with inflow Mach number  is tested. 

For this case the shock wave is approximately aligned with the 

mesh lines. Both the primitive variable based WENO and the 

characteristic variable based WENO are computed. Also in order 

to test the sensitivity of the convergence to the small number , 
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both  and  are tested. The comparison of 

convergence histories are given in Fig. 4. Of all the four WENO 

reconstruction strategies, for both choices of the small value , the 

characteristic variable based WENO method yields smooth 

convergence. For the primitive variable approach, with  

the convergence speed is similar as that for the characteristic 

based approach, while with  the residual has been 

reduced about three orders of magnitude and then fails to 

converge any more.  

 
Fig. 4  Comparison of convergence histories for various WENO 

strategies for the NACA-0012 case,  

 

In order to compare the characteristic and primitive strategies, 

the WENO weights used to calculate  in the region 

contains the shock wave are compared. According to the 

comparison, in the characteristic variable based reconstruction, 

only the component corresponding to the downstream 

propagating pressure wave demonstrates large variations. The 

first and the third component yield moderate variations across the 

shock. In this case the shock wave is approximately aligned with 

the mesh lines, thus the component related to the transverse 

velocity has minor change across the shock and the WENO 

weights for the fourth component approach the designed value. 

The simplified version of characteristic variable based WENO is 

thus reasonable and the component representing the vortex wave 

can be linear interpolated without harming the shock capturing. In 

the primitive variable based reconstruction, the nonlinear process 

selecting the smoothest candidate stencils are activated at more 

grid points and also all weights demonstrate larger variations, in 

other words, the primitive variable approach tends to apply lower 

order reconstruction to more grid points. The entropy distributions 

are compared in Fig. 5 and Fig. 6.  

  

Fig. 5  Entropy distribution, the 

characteristic variable based 

reconstruction 

Fig. 6  Entropy distribution, the 

primitive variable based 

reconstruction 

 

With the characteristic reconstruction the entropy rise across the 

shock wave is sharply and monotonically captured, while there are 

entropy oscillations with the primitive reconstruction. 

Another case with the incoming Mach number  is 

simulated with both the characteristic and primitive variable based 

reconstruction. The small number  has two choices,  and 

. Also the simplified WENO reconstruction with  is 

tested. In this case the shock wave is not aligned with the mesh 

lines and the shock extends further into the ambient and a much 

larger computational domain is used. The comparison of 

convergence histories is given in Fig. 7. As shown in Fig. 7, only 

the two characteristic variable based reconstructions with 

 reduce the residuals smoothly and the other three 

result in convergence stall. While even with  the 

characteristic WENO has better convergence than the primitive 

counter part. 

 
Fig. 7  Comparison of convergence histories for various WENO 

strategies for the NACA-0012 case,  

 

The computational results are compared in Fig. 8 and Fig. 9. 

The simplified characteristic variable based WENO sharply 

captures the shock wave. In this case the angle between the 

shock front and the mesh line is about , while from the 

convergence history and the density contour, the simplified 

version still works well and yields similar results as the original 

version. A significant difference can be observed that the 

numerical result obtained with primitive variable based WENO 

contains post-shock oscillations while the oscillations in the former 

two methods are much smaller. Based on the numerical results 

from the NACA-0012 case, the characteristic variable based 

WENO reconstruction has better convergence speed and 

accuracy, thus should be preferred. 

  
Fig. 8  Density distribution, the 

simplified characteristic variable 

based reconstruction 

Fig. 9  Density distribution, the 

primitive variable based 

reconstruction 

 

4. Numerical example: RAE 2822 airfoil 
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To examine the performance of the WENO reconstruction for 

transonic and turbulent flows, the RAE2822 airfoil is simulated 

with fifth order WENO reconstruction. In this case, the mesh 

consists of  grid points. The freestream condition 

considering wind tunnel correction is  

and the Reynolds number is . 

With , three sets of numerical experiments have been 

conducted, including the characteristic variable based, the 

primitive variable based and the simplified characteristic variable 

based WENO reconstructions. Note that the  based 

correction is absent in these three computations. As shown in Fig. 

10, similar as in the NACA-0012 case, for  all the three 

WENO reconstructions demonstrate smooth convergence. To 

further examine the behavior of these reconstruction methods  

is set to a stringent value of  and the residuals are shown in 

Fig. 11. In this situation, both characteristic variable based WENO 

methods successfully converge with minor loss of speed. While 

the residual of primitive variable based WENO fluctuates at the 

level of about . 

  
Fig. 10  Comparison of 

convergence histories of 

various WENO strategies, 

 

Fig. 11  Comparison of 

convergence histories of 

various WENO strategies, 

 

 

By carefully monitoring the residuals at all mesh points, it is 

found the convergence degradation takes place in the wake 

region. In this area the Mach number is about 0.5 and there are 

large variations of both primitive and characteristic variables and 

the mesh spacing is much larger than in the boundary layer. As 

analyzed in the above, in this case the physical viscosity is not 

enough to fully damp the variations. While in this case the 

characteristic variable based approach behaves better and still 

converges successfully. From the NACA-0012 case and the 

RAE2822 case the convergence speed of the characteristic 

based method is better and less sensitive to the small value .  

  

Fig. 12  Comparison of 

surface pressure coefficients, 

 

Fig. 13  Computed Reynolds 

number based on the local 

mesh spacing 

 

The surface pressure coefficients are compared in Fig. 12. All 

the results are in good agreements with the experiment, though 

they have different convergence properties. The computation 

results with the primitive variables based WENO are shown in Fig. 

13 and the black dot in every picture denotes the grid point with 

maximum residual. In two dimensions there are two values of 

 and the minimum of the two are shown in Fig. 13. The 

turbulent viscosity reaches its maximum near this point and thus 

 has a rather small value of 50. Another set of numerical 

experiments are conducted to examine the effect of bringing in 

viscous parameter into the WENO reconstruction. Both 

 and  are tested. Also the calculations with 

and without the viscous correction are conducted. 

  

Fig. 14  Convergence histories 

with and without viscous effect 

in the primitive variable based 

WENO,  

Fig. 15  WENO reconstruction 

weights along the I=const mesh 

lines in the wake region,  for 

the velocity-Y component 

 

According to the convergence histories in Fig. 14, with the effect 

of , the convergence behavior has been greatly improved 

as in this situation the effective value of  is significantly magnified. 

For , taking into account of  has little effect on 

the convergence, while the accuracy has been obviously 

improved. The WENO reconstruction weights of  

corresponding to the velocity-Y component are compared in Fig. 

15. For both choices of , the weights are tuned towards the 

designed value for optimal order of accuracy. Note that there are 

still some weights not equal to the designed value and the viscous 

effects can be further strengthened to deactivate the usage of the 

nonlinear interpolation for highest accuracy in this region, while at 

the risk of worse shock capturing and a better option is to increase 

the mesh resolution in the wake region. 

  

Fig. 16  Entropy distributions, 

simplified characteristic variable 

based WENO 

Fig. 17  Entropy distributions, 

primitive variable based WENO 

 

For characteristic variable base WENO, the situation is similar 

as in the primitive variable based WENO with . The 

convergence speed is less affected, while all the reconstruction 

weights are tuned towards the optimal value and thus the 

accuracy is improved in the wake region. With the viscous effect, 

the order of accuracy of WENO reconstruction in the boundary 

layer and the wake region is primarily determined by the viscous 

parameter . In the shock region, as the viscosity is in 

general much smaller, thus the WENO reconstruction weights still 

depend on the small value . Similar as in the NACA-0012 case, 
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the characteristic variable based WENO has better accuracy and 

the primitive variable based WENO tends to activate the nonlinear 

interpolation at more grid points. The entropy distributions are 

compared in Fig. 16 and Fig. 17 and the characteristic variable 

approach has obviously better accuracy. 

 

5. Numerical example: Rotor-37 compressor 

The third test case is an example of the three dimensional flow 

through the transonic compressor NASA Rotor-37. This 

compressor rotor is widely used to test the numerical algorithms 

and to study the complex flow phenomena of compressor 

aerodynamics. Plentiful of flow features important to the 

engineering community co-exist in the Rotor-37 case, such as 

strong shock wave-boundary layer interaction induced flow 

separation, tip vortex and vortex-shock wave interactions. Thus 

the capturing of detailed flow features demands accurate 

algorithms. On the other hand because of the strong adverse 

pressure gradient and the complex flow structures in this case, it is 

hard to guarantee the convergence and stability of high order 

schemes. So in the literature central scheme with artificial 

dissipation, also third order MUSCL reconstruction are mostly 

used in this case and fifth order WENO type high order scheme is 

seldom tested. 

In this work the fifth order WENO reconstruction is tested, both 

in the primitive based and the simplified characteristic based styles. 

The small number is set to  and the viscous effect is 

included. The grid used in this case is a multiblock structured 

mesh and consists of approximately 1M points. The spacing 

between the solid and the first off-wall point is tuned to guarantee 

the  is roughly 1. One-dimensional distribution of total 

temperature, total pressure and the flow angles at the inlet surface 

are treated with the use of 1D Riemann invariants. At the outlet 

surface, static pressure distribution based on the radial equilibrium 

equation is used. 

Order 
Primitive 

variable 

Characteristic 

variable 

Characteristic 

variable, simplified 

3 1.00 1.78 1.37 

5 1.62 3.28 2.06 

Table. 1 CPU cost of various WENO strategies 

 

For this three dimensional case, third order WENO and fifth 

order characteristic variable based WENO are also executed for 

several steps to assess the CPU cost of various WENO strategies, 

as shown in Table. 1. Note that the CPU time for third order 

primitive variable based WENO reconstruction is set to be the 

reference value and also this CPU time is not the total CPU time, 

but the one elapsed in the reconstruction step. From the 

comparison, the simplified version of characteristic based WENO 

developed in this work dramatically reduces the CPU cost. For a 

general purpose solver, there are moreover several 

CPU-extensive procedures, such as the time marching, Riemann 

flux and the solution of turbulence equation. Thus accompanied 

with the CPU time reduction comes from the simplified version, 

the total CPU cost overhead is about  compared to the 

primitive variable based approach. 

The convergence histories of both WENO strategies are 

compared in Fig. 18. For the primitive variable based approach, 

the residual is reduced from  to about  and then 

stalls. With the simplified characteristic variable based 

reconstruction, the residual can be further reduced to about 

. 

 

Fig. 18  Convergence histories of fifth order WENO 

reconstruction for the Rotor-37 test case 

 

In order to assess the actual reconstruction order of the WENO 

algorithm in practical engineering problems, a parameter in the 

form of 

 

is used to reflect the deviation of the interpolation weight from its 

designed optimal value. The larger of this value, the lower 

reconstruction order of accuracy is used. The distributions of  

at the radial position of  blade height are given in Fig. 19 and 

Fig. 20. 

  

Fig. 19  Distribution of , 

simplified characteristic variable 

based WENO 

Fig. 20  Distribution of , 

primitive variable based WENO 

 

From Fig. 19 the nonlinear interpolation process is activated 

only in the regions of leading edge shock and the passage shock 

in the simplified characteristic variable based WENO. While as 

shown in Fig. 20, besides the shock region, the nonlinear 

interpolation is used at more grid points in the primitive variable 

approach. An interesting phenomenon is in the region from trailing 

edge to the outlet in Fig. 20, the use of nonlinear interpolation is 

suppressed and it is attributed to the inclusion of viscous effect, as 

in this region the turbulent viscosity is much larger and  is 

between 10 and 100. 

The vorticity magnitudes based on the relative velocity at the 

axial positions of  chord and  chord are compared in 

Fig. 21 and Fig. 22. At the  chord, both methods yield 

approximately the same tip vorticity, while at downstream position, 

the vorticity is dissipated quicker in the primitive variable based 
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approach, especially the suction-side tip vortex.  

 
Fig. 21  Vorticity magnitude distributions at axial positions of  

chord and  chord, simplified characteristic variable based 

WENO 

 

Fig. 22  Vorticity magnitude distributions at axial positions of  

chord and  chord, primitive variable based WENO 

 

The evolution and the breakdown of the tip vortex are important 

to the stability of the compressor and thus the accurate prediction 

is necessary. From the comparison the characteristic variable 

based WENO reconstruction gives better accuracy and efficiency 

and should be preferred. 

 

6. Numerical example: DLR F4 wing-body 

The following test case is the DLR F4 wing-body configuration. 

The flow conditions used is and the 

Reynolds number  based on the wing's mean 

aerodynamic chord length. The mesh consists of about 3.3M grid 

points and is provided by the workshop committee. Note that this 

standard mesh is of questionable quality with high skewness in 

the near-wall region. 

Fifth order WENO reconstruction with both the simplified 

characteristic variable and primitive variable based reconstructions 

are used. Also the  based viscous correction is used to 

reflect the viscous effect in the reconstruction. 

For this case, as given in Fig. 23, the WENO reconstruction 

gives reasonable convergence speed, though the grid has a low 

quality. The two reconstructions have similar convergence 

properties and give the same lift coefficients. While the drag 

coefficient using the primitive variable based approach is about 1.5 

counts higher. 

  

Fig. 23  Convergence histories 

of the DLR F4 wing-body case 

Fig. 24  CD convergence of 

the DLR F4 wing-body case 

 

The comparison of the isosurface with  is given in Fig. 

25 and Fig. 26. From the isosurface in Fig. 25, in the simplified 

characteristic variable based reconstruction, the nonlinear 

interpolation is activated near the windshield, the leading edge of 

the wing and trailing edge and also in a small part of the tip vortex. 

While a significant difference can be observed in the far-field. In 

the primitive variable approach the nonlinear interpolation is 

extensively used in the tip vortex region and the wake region. 

Thus although both methods yield similar lift and drag coefficients, 

the simplified characteristic variable based reconstruction better 

preserve the tip vortex along long distance because in this region 

highest order linear interpolation is always used. Thus for cases 

the tip vortex is important, such as the helicopter flows
(9)

, using 

characteristic variable would help to further improve the accuracy. 

 

Fig. 25   isosurface, simplified characteristic variable 

based WENO 

 
Fig. 26   isosurface, primitive variable based WENO 

 

7. Conclusions 

In this work the application of high order WENO scheme to 

engineering problems is studied. In the literature it is believed for 

engineering problems, the use of characteristic variable in the high 

order WENO reconstruction has little superiority, while at the 

gainless cost of CPU overhead. Thus for engineering problems 

the primitive variable or conservative variable is always used. In 

this paper, the choice of variable is found to do play a role in terms 

of accuracy and convergence. Also the CPU time overhead can 

be obviously reduced based on some reasonable simplifications. 

From the work in this paper the following conclusions can be 

made: 

(1). For engineering problems, the characteristic variable based 

WENO has better accuracy and the nonlinear interpolation 

procedure is always sharply activated near the discontinuities. 

While in the primitive variable based approach it tends to activate 

the nonlinear interpolation at more grid points and thus the 

reconstruction accuracy is lower. As a result the characteristic 
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variable based WENO has better capability of monotone capture 

of shock wave and better preserves detailed flow features. 

(2). For engineering problems in the subsonic and transonic 

regimes, the CPU overhead of the characteristic based WENO 

can be obviously reduced. Based on the Rankine-Hugoniot 

conditions, the components of characteristic variable 

corresponding to vortex wave can be linear interpolated without 

visible loss of shock capturing capability. 

(3). The characteristic variable based WENO has better 

convergence issue and is less sensitive to the small number . 

The improved convergence speed can somewhat counteract the 

CPU time overhead in the characteristic variable based WENO. 

(4). For viscous case, it is preferred to take into account the 

viscous effect. With modification to the small number , in the 

viscous dominated region, the reconstruction order is tuned 

towards the designed value. Also the convergence speed can be 

improved with the consideration of viscous effect. 
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