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Shallow water flows in multiply-connected (looped) open channel networks are encountered in various surface water 
systems. Numerical simulation of such flows is one of the most important issues in environmental hydraulics and other 
related research fields. This paper presents two numerical models of shallow water flows, dynamic wave equations and 
local inertial equations, in which junctions are implicitly and efficiently handled. Mathematical properties of the two 
models are briefly reviewed in order to understand behaviour of their solutions. Computational results of test and real 
problems reveal their applicability and limitations for flows in open channel networks. 

 
1. Introduction 

Analysis of flows in surface water systems concerns a wide range of 
important problems in environmental hydraulics and other related 
research fields. Examples are flows in irrigation and drainage systems(1-2), 
flash floods propagating downstream valleys(3-4) and tidal flows in 
estuarine systems(5-6). Macroscopic dynamics of these flows is reasonably 
described with the cross-sectionally averaged one-dimensional shallow 
water equations (1-D SWEs) assuming both the incompressibility of 
water and hydrostatic pressure distribution(7-8). The 1-D SWEs are a 
coupled system of nonlinear hyperbolic partial differential equations 
having source terms. The 1-D SWEs cannot reproduce essentially 
multi-dimensional and non-hydrostatic phenomena that the 2-D and 3-D 
hydrodynamic models appropriately handle(9-10), such as solitary waves, 
breakings waves and oblique hydraulic jumps. Nevertheless, they have 
served as one of the most effective tools for engineering purposes because 
of their efficiency. Since analytical and approximate solutions to the 1-D 
SWEs are available only for limited cases, such as dam break problems in 
flat channels(11-12), numerical models have been used to solve them in 
scientific and engineering applications.  

Several types of shallow water models including the 1-D SWEs have 
been presented so far. In this paper, the 1-D SWEs retaining the 
momentum flux term(13) are referred to as the dynamic wave equations 
(DYNs) in order to distinguish them from reduced counterparts. Examples 
of the reduced models are the local inertial equations (LOCs), the diffusion 
wave equation (DIF) and the kinematic wave equation (KIN)(14-17). These 
models are derived with neglecting the temporal and/or momentum flux 
terms in the momentum equation while maintaining the complete mass 
conservation property. Although they cannot reproduce some important 
transient phenomena involving discontinuous water surface profiles that 
the 1-D SWEs deal with, their simplicity and higher efficiency are 
attractive in practical applications. 

Typical surface water system presents a network structure, and is 
regarded as a connected graph consisting of a number of junctions 
connected with nodes (locally 1-D open channel networks)(18). In real 
problems, shallow water flows in multiply-connected (looped) open 
channel networks are frequently encountered. Development of an efficient 
modeling framework for analyzing such flows is therefore an important 
issue. Since a connected graph has singularities at junctions where spatial 
derivatives and some hydraulic properties, such as discharge and 

cross-sectionally averaged velocity, are not well-defined. A key to develop 
a successful numerical model is to deal with junctions efficiently and 
consistently, which is achieved with the use of appropriate internal 
boundary conditions (IBCs) that describe balance laws of the mass and 
momentum at junctions. Almost all of the existing models handle the 
flows in reaches and at junctions separately, resulting in the loss of 
efficiency(19-21). The authors developed mathematical models of shallow 
water flows in multiply-connected open channel networks that handle 
junctions as implicit IBCs, which is directly incorporated into the 
numerical counterparts without complicated algorithms(13, 22). Two 
temporally explicit numerical models for the DYNs have been developed, 
which are here refereed to be as the finite element/volume method 
(FEVM) that solves the continuity equation with the standard finite 
element scheme and the momentum equation with a cell-centered finite 
volume scheme(13), and the dual finite volume method (DFVM) that 
utilizes the staggered finite volume scheme(22). The authors recently found 
that these numerical models can also be applied to the LOCs with 
dropping only the momentum flux term.  

The purpose of this paper is to carry out theoretical and numerical 
analyses to investigate applicability and limitation of the DYNs and LOCs. 
These models are solved using the DFVM and applied to test and real 
problems. Dam break problems and tidal flows in multiply-connected 
open channel networks are considered as the test problems. As the real 
problems, flows in a hydromorphic drainage system and flows in a river 
network driven by flood tide are considered, both of which differ 
significantly with each other in conditions. Since no direct comparison of 
the DYNs and LOCs for flows in open channel networks has been carried 
out, this paper contributes to further understandings of these models.  

The remainder of this paper is organized as follows. Concise 
introductions for the DYNs and LOCs are given in Section 2. The DFVM 
is presented in Section 3. Test and real problems are carried out in 
Sections 4 and 5, respectively. Section 6 provides conclusions. 
 
2. Shallow water models 
2.1 Dynamic wave equations (DYNs) 

The DYNs used in this paper consist of the continuity equation 

 0A Q Qq q
t x t x

Tη η
η

∂ ∂ ∂ ∂ ∂
+ − = + − =

∂ ∂ ∂ ∂ ∂
 (1) 
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and the momentum equation 
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f 0Q Q gA S
t x A x

β η ∂ ∂ ∂ + + + =   ∂ ∂ ∂  
 (2) 

where t  is the time, x  is the 1-D abscissa taken along the channel, 
A  is the cross-sectional area of flow, T  is the top width of the water 

surface, η  is the water surface elevation, Q  is the discharge, q  is 
the lateral inflow, g  is the gravitational acceleration, β  is the 
momentum coefficient defined as(23) 

 
21 d

A

u A
A V

β  =  
 ∫  (3) 

where u  is the velocity in the cross-section and V  is the 
cross-sectionally averaged velocity. The condition 1β ≥  holds for 
arbitrary shallow water flows according to the definition (3). fS  is the 
Manning’s friction slope term(24) 

 
2

f 2 4/3

n Q Q
S

A R
=  (4) 

where n  is the Manning’s coefficient and R  is the hydraulic radius. 
The DYNs comprise a system of conservative hyperbolic PDEs with 
source terms, which handle both gradually and rapidly varied flows(25-26). 
Momentum exchange caused by lateral inflows is not considered in (2) 
because only right-angled lateral inflows are assumed in this paper. The 
Manning’s coefficient n  and the momentum coefficient β  are taken 
as constant values in a domain. 
 
2.2 Local inertial equations (LOCs) 

The LOCs consist of the continuity equation (1) and the reduced 
momentum equation 

 f 0Q gA S
t x

η∂ ∂ + + = ∂ ∂ 
, (5) 

in which the momentum flux term is neglected. Being different from the 
LOCs used in the literatures(15, 17), that presented in this paper deal with 
flows with general cross-sections.  

As noted in Yoshioka et al.(27), solutions to the LOCs and DIF subject to 
a same boundary condition coincide if they exist. According to De 
Almeida et al.(17), relative errors of water depths between the DYNs and 
LOCs are roughly proportional to the square of a Froude number. 
Because the LOCs do not consider the momentum flux term, it is not 
suited to predict flows with a large Froude number such that junctions and 
channel bends are present where non-negligible horizontal exchanges of 
the momentum is important. 
 
2.3 Eigenstructures 

Eigenstructures of the DYNs and LOCs are presented in this 
sub-section for the purpose to briefly review their differences. The DYNs 
have the two eigenvalues 

 ( )
2

1Q Q Ag
A A T

λ β β β±  = ± − + 
 

. (6) 

Assuming a cross-sectionally uniform flow ( 1β = ) reduces (6) to the 
conventional ones 

 Q Ag
A T

λ ± = ± . (7) 

The eigenvalues λ±  in (6) are rewritten using the “conventional” 
Froude number 1Fβ =  as 

 ( )2

1 1
1 1Ag F F

T β β
βλ

β
±

= =

 −
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 
, (8) 

which suggest the use of the “new” Froude number 
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2
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+
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where 1Fβ =  in (8) is described as 1F . Local flow regimes for the 
DYNs are summarized on the basis of Fβ  as follows: 
 
・Subcritical flow ( 2 1Fβ < ), 
・Critical flow ( 2 1Fβ = ), 
・Supercritical flow ( 2 1Fβ > ). 
 
The above classification for the flow regimes is equivalent to 
 
・Subcritical flow ( 2

1F β< ), 
・Critical flow ( 2

1F β= ), 
・Supercritical flow ( 2

1F β> ). 
 
If β  is specified to be less than 1(28), λ±  become complex under 
some conditions and then the DYNs loss the hyperbolicity.  

As shown in the above, the momentum coefficient β  plays a central 
role in determining the wave speeds. Since in practice cross-section of 
channel does not always have an idealized shape such as a rectangle, the 
value of β  should be appropriately estimated. It is therefore 
recommended in applications to carry out a sensitivity analysis on it.  

It is also important to note influences of β  on solutions to problems 
with wet and dry interfaces. Among them, classical dry dam break 
problems have long been studied by many researchers in particular since 
the fundamental theoretical analysis of Ritter(29) who obtained the 
analytical expression of the front propagation speed of the wet and dry 
interfaces(30-33). Hogg and Pritchard(33) analyzed problems with 1β >  
on the basis of the characteristics theory and showed that a wet and dry 
interface becomes ill-defined within a finite time if the friction slope is 
neglected in (2). This is due to the fact that the propagation speed of the 
disturbance exceeds that of the interface at the time, which is not a 
physically accepted situation.  

The LOCs have the following two eigenvalues 

 Ag
T

λ ± = ± , (10) 

which are formally derived with substituting 0β =  into (6). According 
to (6) and (10), both the DYNs and LOCs are hyperbolic. As shown in 
(10), the wave celerity for the LOCs is slower than that of the DYNs. 
Furthermore, being different from the DYNs, solutions to the LOCs do 
not have critical and super-critical type flow regimes, indicating that they 
cannot reproduce transitional phenomena, such as hydraulic jumps and 
wet dam break problems.  
 
2.4 Some remarks on the LOCs 

This sub-section describes important remarks on the LOCs and DIF, 
the latter being a doubly-nonlinear degenerate parabolic PDE(16). An 
apparent difference between the LOCs and DIF is that the temporal term 
in the momentum equation is neglected or not. Bates and his co-workers 
persist that the LOCs are superior to the DIF in the sense that an efficient 
numerical model can easily be developed for the former owing to fully 
retaining the temporal terms(15, 17). This is because the latter in general 



The 27th Computational Fluid Dynamics Symposium 
Paper No. B07-1 

Copyright © 2013 by JSFM 3

requires the use of a very small time increment for temporally explicit 
method and a time-consuming iterative algorithm for implicit method. 

Another remark to be noted is a relationship between the LOCs and 
DIF in an asymptotic limit. According to the theory of Chapman-Enskog 
expansion for singular hyperbolic PDEs(34), formally introducing a small 
parameter 0 1ε< =  in (5) yields 

 f 0Q gA S
t x

ηε ∂ ∂ + + = ∂ ∂ 
. (11) 

Taking the limit of 0ε → +  in (11) leads to the DIF, a parabolic system 
of PDEs consisting of the continuity equation (1) and 

 f 0S
x
η∂

+ =
∂

. (12) 

Application of an asymptotic-preserving scheme(35) to (1) and (11) with a 
sufficiently small ε  yields the approximate solution of the DIF with 
numerically retaining the temporal term of (11), which is far efficient 
compared with directly solving the DIF. This research topic is beyond the 
scope of this paper and will be addressed in future researches. 
 
3. Dual finite volume method (DFVM) 

In this paper, the DYNs and LOCs are solved using the DFVM 
(Appendix), a recently developed simple and versatile numerical method 
for shallow water flows both in single open channels and in open channel 
networks that have channel bends and multiply-connected structures. The 
DFVM applies a node-centered finite volume scheme to the continuity 
equation (1) and an upwind, cell-centered finite volume scheme to the 
momentum equation (2), respectively. The water surface elevation η  
and the discharge Q  serve as the dependent variables, which are 
distributed to the dual cells and regular cells respectively. The dual cell is 
the 1-D counterpart of the Voronoi diagram for multiple dimensions. 
Upwind algorithms applied to the momentum flux and source terms 
stabilize numerical solutions without explicitly adding artificial 
dissipation terms. The DFVM does not require the use of water surface 
reconstruction algorithms to preserve a still water condition because it 
utilizes the water surface elevation η  as a dependent variable. Local 
mass conservation at junctions is achieved as the implicit IBCs that do not 
rely on complicated numerical algorithms. 

In this paper, the DFVM is slightly modified so that the upwinding of 
the momentum flux term in (2) is carried out with the new Froude 
number Fβ  not with the conventional one 1F . In the original DFVM, 
local flow regimes are identified from the value of 1F , which is not 
consistent with the eigenstructures of the DYNs as indicated in the 
previous section. According to preliminary numerical tests not presented 
in this paper, the modification does not significantly improve solution 
profiles; however, it certainly enhances theoretical foundations of the 
DFVM. In addition to the above modification, a new momentum flux 
evaluation scheme to more accurately simulate flows around junctions is 
implemented in the spatial discretization procedure(36). Incorporation of 
the scheme into the DFVM significantly improves the accuracy to predict 
the discharge ratios for the flows downstream of a junction. The accuracy 
in some cases is comparable to that of a horizontally 2-D shallow water 
model, demonstrating its validity(37-38). Performances of the DFVM have 
been verified with a series of benchmark tests of subcritical, supercritical 
and transcritical flows(39-42), clearly showing that it is as accurate as the 
other recently developed numerical models. The FEVM, a finite/element 
counter part of the DFVM, has also successfully been applied to a wide 
range of problems(13, 35, 43).  

Application of the DFVM to the LOCs presented in this paper is 

straightforward because it is achieved simply neglecting the momentum 
flux term of (2). Spatial discretization for the other terms is carried out in a 
similar manner. Since the LOCs do not have the momentum flux term in 
its formulation, no momentum flux evaluation scheme is necessary in 
order to solve them in locally 1-D open channel networks.  

Temporal integration of the DFVM is carried out using the classical 
fourth-order Runge-Kutta method. Since this temporal integration method 
is of an explicit type, the time increment t∆  has to be chosen as a 
sufficiently small value(44) such that 

 ( ) 21x AgV V
t T

β β β∆
> + − +

∆
, (13) 

where x∆  is the elemental length is at least satisfied in an entire 
computational domain. 
 
4. Test problems 

Since the DFVM has been extensively verified with test problems in 
open channels, this paper focuses mainly on those of in open channel 
networks. An exception is the dam break problems firstly carried out in 
this section to see influences of β  on solutions to the DYNs. 
 
4.1 Dam break problems in a single channel 

Dam break problems in an open channel serve as fundamental test 
cases to examine ability of a numerical model for the DYNs to resolve 
upstream and downstream wave propagations involving transitions and 
shocks. Here dam break problems in a straight, flat channel are 
considered. A 2,000 (m) length open channel is considered as the domain 

( )0,2000Ω =  (m). Cross-section of the channel is a rectangle with the 
width of 1 (m). The initial water elevation η  (m) is specified as 

 
( )
( )

U

D

  1000

  1000

h x

h x
η

 ≤= 
>

 (14) 

where Uh  (m) and Dh
 
(m) denote the initial upstream and 

downstream water depths, respectively. The initial discharge is 0Q =  
(m3/s) in the entire Ω . The initial upstream water depth Uh  is fixed to 
10 (m), while the initial downstream water depths Dh  are considered 
three cases: 5.0 (m) (Case DBA), 0.1 (m) (Case DBB) and 0.0 (m) (Cases 
DBC and DBD). Cases DBA and DBB are the problems in a frictionless 
channel, which intend to reveal dependence of the water surface profiles 
on β . On the other hand, in Cases DBB and DBC, non-zero Manning’s 
coefficient n  are specified as 0.005 (s/m1/3) in Case DBC and 0.020 
(s/m1/3) in Case DBD, respectively, both of which are realistic values in 
experimental and fields situations. The upstream and downstream 
boundaries of Ω  are solid walls where flows are reflected. Ω  is 
uniformly discretized into 2,000 regular cells so that numerical solutions 
sufficiently converge. The time increment t∆  is fixed to 0.0015 (s). 

The computed water surface profiles are illustrated in Figs. 1 through 4 
for each case with different values of β , namely, 1.00β = , 1.05, 1.10, 
1.15 and 1.20. The label “DBA-1.00” represents the water surface profile 
in Case DBA for the value of 1.00β = , and so is for the others. Figs. 1 
and 4 show that the propagation speeds of the shocks and wet and dry 
interfaces increase as β  increases. Figs. 1 and 2 show that water depth 
immediately upstream of the shocks decrease smaller as β  increases. 
Figs. 3 and 4 indicate that the water surface profiles are apparently less 
sensitive to β  in Cases DBC and DBD than those in the wet channel 
bed counterparts, but its influence is more significant for the smaller n . 
Although not presented here, specifying 0n =  (s/m1/3) in a dry dam 
break problem results in a numerical failure being consistent with the 
theoretical results of Hogg and Pritchard(33). 
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4.2 Dry dam break problem in an open channel network 

A dry dam break problem in a hypothetical multiply-connected open 
channel network (Fig. 5) is carried out with the DYNs. This test problem 
is challenging because it requires a consistent junction treatment technique 

as well as a stable discretization method for rapidly varying transcritical 
flows involving wet and dry interfaces, non-rectangular cross-sections and 
channel bends. Only a few attempts at cross-sectionally averaged 
modeling have been made for the problems in open channel networks.  

 
 

Fig. 1  Computed water surface profiles for Case DBA ((a) 15t = (s), (b) 30t = (s) and (c) 45t = (s)) 
 

 
 

Fig. 2  Computed water surface profiles for Case DBB ((a) 15t = (s), (b) 30t = (s) and (c) 45t = (s)) 
 

 
 

Fig. 3  Computed water surface profiles for Case DBC ((a) 15t = (s), (b) 30t = (s) and (c) 45t = (s)) 
 

 
 

Fig. 4  Computed water surface profiles for Case DBD ((a) 15t = (s), (b) 30t = (s) and (c) 45t = (s)) 
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The reaches in the channel network are equal in terms of length and bed 
slope, which are 10 (m) and 0.01, respectively. Cross-section of the 
channel is a rectangle with the width of 10 (m) in the reach A-H and a 
triangle with the side slope of 1:1 in the others. Manning’s coefficient n  
is set as 0.040 (s/m1/3) for the reaches B-C-D and 0.030 (s/m1/3) for the 
others. The momentum coefficient β  is set as 1.1. A vertical wall 
serving as a dam is installed at the middle of reach A-B, namely H, 
dividing the channel network into an upstream reservoir (A-H) and a 
downstream multiply-connected channel network. The initial water depth 
immediately upstream of the dam is set as 0.6 (m) and the downstream 
channel network is initially dry. Both the upstream and downstream-ends 
are solid walls. The dam is instantaneously removed at the initial time 

0t =  (s). Each reach is divided into 200 regular cells. The time 
increment t∆  is set as 0.001 (s).  

Fig. 6 shows the computed water surface profiles in the domain. A 
surge from the reservoir separates at B. The divided surges converge at D 
and hit the downstream wall at E, generating a receding bore propagating 
upstream. There are also other receding bores starting at bending points C 
and F, as observed in some experiments(45). Increasing spatial and 
temporal resolutions do not significantly alter the computational results, 
showing validity of the numerical simulation carried out here.  

The LOCs has also been applied to this problem; however, the 
computed water surface profile diverged, highly oscillating around the 
dam H. This is considered due to the instability of the DFVM for the 
LOCs, indicating necessity of improvements. 
 
4.2 Tidal flows in an open channel network 

The DYNs and LOCs are next applied to numerical simulation of tidal 

flows in a hypothetical flat, multiply-connected open channel network. 
The domain has a same network structure with the locally 1-D open 
channel network used in the previous test problem. Length of each reach 
is 1,000 (m). Cross-section of the channel is a rectangle with the width of 
25 (m) for all the reaches. The momentum coefficient β  is set as 1.1. 
The boundary E is a solid wall. The boundary A is treated as an open 
boundary at which the water surface elevation Aη  is specified directly 
using a sinusoid function as  

 A
25 sin

43,200
tπη  = +  

 
. (15) 

Initial condition is set as a still water with the water depth of 5 (m). Each 
reach is divided into 200 regular cells. The time increment t∆  is set as 
0.5 (s). Terminal time of the computation is 43,200 (s). 

 
 

Fig. 7  Computational domain for the first real problem 
 

 
Fig. 8  Bed elevation distribution in the domain  

 

 
 

Fig. 9  A sketch of cross-section for the first real problem 
 

 
 

Fig. 5  Open channel network for test problems 

 
 

Fig. 6  Water surface profiles in the open channel network for the DYNs 
presented at the time interval of 5 (s) 
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Maximum relative errors between the computed water depths for the 
DYNs and LOCs at the key nodes B, C, D, E and F are 9.2×10-4, 1.1×10-3, 
1.2×10-3, 1.2×10-3 and 1.2×10-3, respectively, demonstrating that the 
results of the two models are almost identical. This is because the Froude 
number of the flow is sufficiently small such that the use of the LOCs is 
justified. The results indicate applicability of the LOCs to numerical 
simulation of tidal flows in multiply-connected open channel networks 
with relatively wide channel widths. 
 
5. Real problems 

For the purpose of making further comparisons of the DYNs and LOCs, 
numerical simulations of two significantly different real shallow water 
flows in multiply-connected open channel networks are carried out.  
 
5.1 Flows in a hydromorphic drainage system  

Applicability of the DYNs and LOCs to real problems is firstly 
assessed with surface water flows in a multiply-connected open channel 
network draining hydromorphic farmlands in the Guinea savanna 
agro-ecological zone of Ghana(13, 46). The main water input into the 
channel network is direct rainfall and lateral groundwater seepage from 
the surrounding rice fields. Fig. 7 illustrates a plane view of the open 
channel network as the computational domain with the mesh and key 
nodes alphabetically labeled from A through P. The open channel network 
consists of a main loop (A-B-C-D-E-F-A) running in the rice fields, a 
downstream gully (K-L-M-N-O-J-P) and steep cliffs connecting the main 
loop and the gully (F-L, A-M, G-N, H-O and I-J). The node D is the 
highest point in the channel network, K and P the boundaries, A, F, G, H, J, 
L, M, N and O are junctions. The node P is the downstream-end of the 
domain where a free-overflow natural weir is installed. Fig. 8 shows bed 
elevation distribution in the domain where that of the downstream-end P 
is set as the normal elevation 0 (m). Bed slopes in the domain are very 
irregular with the maximum value of 1/2.14 in a gully. Cross-section of 
the channel is non-rectangular and non-prismatic, which is governed by 
the five parameters H , lW , rW , lS  and rS  as shown in Fig. 9(13). 
Total numbers of the regular cells and the nodes in the computational 
domain are 228 and 224, respectively. Yoshioka et al.(18, 47) computed 
mean residence time distribution of a conservative solute injected into the 
domain on the basis of Kolmogorov’s backward equations, estimating the 
maximum mean residence time of the solute in the domain as 2,200 (s) at 
a no-rainfall steady state and as 500 (s) that of during the rainfall event 
focused on later, respectively. 

The momentum coefficient β  and the Manning’s coefficient n  in 
the domain have been estimated as 1.10 and 0.015 (s/m1/3), respectively(13). 
Surface water flows in the channel network exhibit highly complicated 
natures including both subcritical and supercritical flows due to its 
irregular topography. The time increment is set as 0.05t∆ =  (s). Other 
computational conditions are same with those in Unami and Alam(13). 

Fig. 10 presents computational results of the outflow hydrographs at the 
downstream-end P for the DYNs and LOCs during a rainfall event in a 
rainy season that caused severe floods in downstream area of the 
farmlands. The outflow discharge of the LOCs is gently varying 
compared with that of the DYNs. Maximum relative error between the 
discharges for the models is more than 0.4.  

Another set of numerical simulations for the DYNs are also carried out 
under the same initial and boundary conditions with varying the values of 
the momentum coefficient β  for the purpose of a brief sensitivity 
analysis. Computational results of the relative errors for the outflow 
discharge at the downstream-end P are shown in Fig.11. The label 
“Relative error-1.00” represents the relative error of the outflow 

discharges between that of the estimated value 1.10β =  and that of 
1.00β = , and so is for the others. Maximum value of the relative error is 

less than 0.08 for these computational cases, showing that varying β  
within the presented range does not significantly alter the hydrograph. 
 
5.2 Flows in a river network driven by a flood tide 

The DYNs and LOCs are next applied to numerical simulation of flows 
driven by a flood tide in a tidal river network surrounding a polder near 
the coast of Bay of Bengal, Bangladesh(48). Fig. 12 illustrates a plane view 
of the river network as the computational domain with labeled key nodes. 
The river network is connected with Bay of Bengal at B-0. The boundary 
B-1 is connected with one of the downstream tributaries of the Meghna 
River. A polder surrounded by tidal river is vulnerable to flood tides that 
may cause a severe flooding events associating salt damages(49-50). In 
these coastal areas, such a serious event is caused by the arrival of a 
tropical typhoon. Shallow water models can serve as the foundation of 
effective analysis of this kind of disasters. 

The river network is discretized into a mesh with 398 regular cells and 
394 nodes. The normal water level is set as 0 (m) above the sea level. 
Channel bed elevation in the large river network surrounding the polder is 
set as -10 (m), while those for the small channels in the polder are 
distributed between -4 (m) and 0 (m). A still water with the surface water 
elevation of 0 (m) in the entire domain is set as the initial condition. The 
two boundaries B-0 and B-1 are open boundaries at which the external 

 
Fig. 10  Computed outflow discharges at P for the DYNs and LOCs 

and the relative errors between them 
 

 
Fig. 11  Computed outflow discharges at P for the DYNs with 

different values of the momentum coefficient β  
 



The 27th Computational Fluid Dynamics Symposium 
Paper No. B07-1 

Copyright © 2013 by JSFM 7

water surface elevation Eη  for a hypothetical flood tide event is 
specified as(48) 

 E
86,400max 0,5min ,

43,200 43,200
t tη

 − 
=   

  
 (m). (16) 

The discharge at the open boundaries B-0 and B-1 are specified on the 
basis of Eη  as 

 E B-0 or B-1 B-0 or B-1 E B-0 or B-1 E2Q T gη η η η= − −  (m3/s). (17) 

The other boundaries are treated as solid walls. The time increment is set 
as 1t∆ =  (s).  

Figs. 13 and 14 show the computed water surface elevations in the river 
network at the peak ( 43,200t = (s)) and at the end ( 86,400t =  (s)) of 
the flood tide for the DYNs and LOCs, respectively. Relative errors 
between the water surface elevations at the peak and end of the flood tide 
are 1.1×10-2 and 7.7×10-3, respectively, showing that the LOCs give 
comparative computational results with the DYNs at the peak. The 
computed water surface elevations for the LOCs are less than those of the 
DYNs, indicating that application of the former to analysis of a flood tide 
event results in an underestimation of its risk. 

Although the simulation has successfully been carried out without 
numerical failures, it should be emphasized that the DFVM presented in 
this paper computes flows only in the channels. Overtopping flows from 
the channels to the polders are therefore not taken into account. More 
realistic, detailed numerical simulations of flood tides require the use of a 
sophisticated coupled modelling framework of water flows both in 
cross-sectionally 1-D open channel flows and horizontally 2-D overland 
flows(51-52). An FEVM for solving the 2-D SWEs currently under 
development can be used for this purpose(53). 
 
6. Conclusions 

Two shallow water models, the DYNs and LOCs, are presented and 
applied to test and real problems in order to investigate their applicability 
and limitations. Several mathematical properties of the DYNs and LOCs 
were briefly reviewed mainly focusing on their eigenstructures. 
Computational results of the test and real problems for the DYNs with the 
DFVM demonstrated their versatility, well reproducing the numerical 
solutions without numerical failures under the severe computational flows. 
The computational results also suggested high applicability of the LOCs 
to analysis of the flows in multiply-connected tidally-driven river 
networks where the Froude number is sufficiently small. The results were 
comparable to those of with the DYNs. On the other hand, the 
computational results of the dam break problems showed clearly that the 
present LOCs should not be applied to simulate these kinds of flows. In 
conclusions, the LOCs give reasonable results for the flows with small 
Froude numbers where the momentum exchanges are negligible. 

As demonstrated in this paper, the DFVM, a fully explicit numerical 
model for the DYNs and LOCs, has successfully been applied to 
numerical simulations under various flow conditions. Computational 
performance of the DFVM can be improved if a semi-implicit algorithm 
is incorporated into it in order to remove the restriction for the time 
increment. Then the improvements should be made so that its algorithmic 
simplicity is not degraded. There remain many important research topics 
to be addressed in order to develop a more promising model for analyzing 
a wide range of shallow water flows, such as coupling of the DYNs with 
multi-dimensional shallow water models or with groundwater flow 
models(54-55). The DFVM used in this paper will be applied to risk analysis 
of a catastrophic dam break flash flood in Japan caused by a huge 
earthquake, and the analysis results will be presented in elsewhere. 

 

 
 

Fig. 12  Computational domain for tidal flows in an estuary 

 
Fig. 13  Computed water surface profiles for the DYNs and LOCs at 

the peak of the flood tide 

 
Fig. 14  Computed water surface profiles for the DYNs and LOCs at 

the end of the flood tide 
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Appendix 

Spatial discretization algorithm for the DFVM used in this paper is 
described in this appendix.  
 
A.1 Computational mesh 

A couple of staggered computational meshes, a regular mesh and a dual 
mesh, are used in the DFVM. The continuity equation (1) is solved on the 
dual mesh, while the momentum equation (2) on the regular mesh, so as 
to avoid conflicting numbers of equations and unknowns. The domain 
Ω  is first divided into a regular mesh consisting of regular cells bounded 
by two nodes, so that a junction falls on one of the nodes. The regular 
cells and the nodes are indexed with the natural numbers. The total 
numbers of regular cells and nodes are denoted by cN  and nN , 
respectively. The kth regular cell is denoted by kΩ . The length of kΩ  
is represented by kl . The two nodes bounding both sides of kΩ  are 
denoted by the ( ),1kϕ th node and the ( ),2kϕ th node. The abscissa 
in kΩ  is directed to the ( ),2kϕ th node. The number of regular cells 
connected to a generic ith node is denoted by ( )v i . The jth regular cell 
connected to the ith node is referred to as the ( ),i jκ th regular cell 

( ),i jκΩ . There are two nodes that bound ( ),i jκΩ . One is the ith node, 
and the other is referred to as the ( ),i jµ th node. In ( ),i jκΩ , the 
direction of the abscissa is identified with the parameter ,i jσ , which 
equals 1 when x  is directed to the ( ),i jµ th node, and otherwise to -1. 
A dual mesh is generated from the regular mesh. Following the 
multi-dimensional analogue of Mishev(56), define the ith dual cell iS  as 

 ( ){ }, <   for  1 ( )  i i i jS x x x x x j iµ ν= − − ≤ ≤  (18) 

where ix  and ( ),i jxµ  represent x  at the ith node and at the 
( ),i jµ th node, respectively. The dual mesh consists of nN

 
dual cells. 

The cell interface between iS  and ( ),i jSµ  
is denoted by ,i jΓ . The 

water elevation η  is attributed to the dual cells, and the discharge Q  
to the regular cells. The discretized η  in iS  is denoted by iη , and the 
discretized Q  in kΩ  by kQ .  
 
A.2 Continuity equation 

The continuity equation (1) is discretized on a dual mesh. The 
cell-vertex finite volume formulation of the continuity equation in the 
dual cell iS  is 

 ( )

( )

, ,
1

d d
i i

i

i j i jS S
j

T x Q q x
t

ν

κ

η σ
=

∂
+ =

∂ ∑∫ ∫ . (19) 

Assuming a linear variation of the top width T  in ( ),i jκΩ
 
yields the 

following relationship 

 
( )

( ), ,0 , ,1 , ,0
, ,

i
i j i j i j

i j i j

x xT T T T
lκσ
−

= + −  (20) 

where , ,0i jT  and , ,1i jT  are the values of T  at the ith node and at the 
( ),i jµ th node in ( ),i jκΩ , respectively. The first term on the left-hand 

side of (19) is evaluated as 

 ( ) ( )
( )

, ,0 , ,1,
1

1 dd 3
8 di

i
i

i j i ji jS
j

T x l T T
t t

ν

κ
η η

=

 ∂
= +  ∂  

∑∫ , (21) 

leading to 

 ( )

( )

( ) ( )
( )

, , ,0 , ,1, ,
1 1

d 1 3
8d

i i
i

i j i j i ji j i j
j j

Q q l T T
t

ν ν

κ κ
η σ

= =

   
= − + +      

   
∑ ∑ ∑  (22) 

where q∑  represents the discharge contributed from the lateral 
inflows and the boundary conditions. 
 
A.3 Momentum equation 

The upwind FVM(13) based on the local Froude number is applied to 
the momentum equation (2). The cell-centered finite volume formulation 
of the momentum equation in kΩ  leads to 

 [ ] f
d d
d k k

k
k

Ql F gA S x
t x

η
∂Ω Ω

∂ + = − − ∂ ∫  (23) 

where kΩ  is the interface of k∂Ω .  
Flux evaluation in the momentum equation (2) is carried out with a 

simple upwind discretization. For each generic regular cell kΩ , the node, 
of the two nodes bounding kΩ , to which the flow is directed is referred 
to as the downstream node, and the other is referred to as the upstream 
node. The vector starting from the upstream node and ending at the 
downstream node is denoted by kχ . The cell flux kF  for the regular 
cell kΩ  is determined using the local Froude number as a weight. 
When the downstream node in kΩ  is wet, ,DSkA ε≥  for a small 
threshold value ε , and the cell cross-sectional area kA  and the cell 
cross-sectionally averaged velocity kV  are calculated as 

  k
k

k

QV
A

=  (24) 

with the cell cross-sectional area 

 ( ) ,DS ,US 1k k k k kA A Aω ω= − +  (25) 

and the weight 

 2

1 max 1 ,0k
kFr

ω
 

= − 
 

 (26) 

where 2
kFr  is the square of the cell local Froude number Fβ  in (9) 

computed using β , g , ,DSkT , kQ  and ,DSkA , and the subscripts 
US and DS indicate values at the upstream node and the downstream 
node, respectively, in kΩ . The velocity kV

 
is taken to be 0 when 

,DSkA ε< . Finally, the cell flux kF  is determined as 

 k k k kF Q Vβ= . (27) 

The flux on the cell interface k∂Ω  is evaluated considering connections 
between cells and the momentum balance principles(13, 35). The set of 
indices of the regular cells, the downstream (upstream) nodes of which 
fall on the upstream (downstream) node of kΩ , is denoted as kU  
( kD ). The flux at the upstream cell interface ,USk k∂Ω ⊂ ∂Ω  is 
prescribed as 
 ( )

,US ,max cos ,0
k

k

k k
U

F r Fκ κ
κ

θ
∂Ω

∈

= ∑  (28) 

where kr  is the discharge ratio defined analogues to that of Yoshioka et 
al.(36) as 

 
1

k

k k
D

r Q Qκ
κ

−

∈

 
=   

 
∑  (29) 

which equals to 0 if its denominator vanishes and ,k κθ  is the angle 
between kχ  and κχ . The discharge ratio kr  satisfies the partition of 
unity property 
 1

k

k
D

r
κ∈

=∑ . (30) 

The flux at the downstream cell interface ,DSk k∂Ω ⊂ ∂Ω  is identical to 
the cell flux 
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,DSk

kF F
∂Ω

=  (31) 

with the exception that 

 ( )
,DS

,min cos ,0
k

k kF F Fκ κθ
∂Ω

= −  (32) 

when the downstream node is connected to exactly two regular cells. 
Finally, the second term of the left-hand side of (23) is evaluated using 

,USk
F

∂Ω
 and 

,DSk
F

∂Ω
 with considering the directions of the flows as 

well as that of the x  abscissa. The momentum flux evaluation scheme 
presented is physically relevant in the sense that it considers the contact 
angles of the channels meeting at a junction and guarantees non-increase 
of the momentum variation(57). Application of an improper, momentum 
variation-increasing scheme to the DFVM leads to unphysical surface 
water profiles(36, 58). 

The source terms in the right-hand side of (23) are discretized using an 
upwind algorithm. The first term of the right-hand side of (23) is 
evaluated as 

 ( ) ( )( ),2 ,1d
k

kk k kgA x gl A
x ϕ ϕ

η η η
Ω

∂ − = − − ∂ ∫  (33) 

with 

 
( )

( ) ( ) ( )

2
,US

, ,1 , ,2 2

                    1

 <1
2

k k

k
k k k k

k

A Fr
A A A

Frϕ ϕ

 ≥


=  +



. (34) 

The second term of the right-hand side of (23), the friction slope term, is 
discretized as 

 ( )f f ,d
k

kk kgA S x gl A S
Ω

− = −∫  (35) 

with 

 
4/ 32

f , 10/3

kk k k
k

k

n Q Q P
S

A
=  (36) 

and 

 
( )

( ) ( ) ( )

2
,US

, ,1 , ,2 2

                   1

 <1
2

k k

k
k k k k

k

P Fr
P P P

Frϕ ϕ

 ≥


=  +



. (37) 

However, fS
 
is taken as 0 when kA ε< . Finally, each d

d
kQ

t
 is 

explicitly computed as 

 [ ] ( ) ( )( )( )f ,, 2 ,1
d 1
d k

k
k k kk k

k

Q F g A l S
t l ϕ ϕη η

∂Ω
= − − − + . (38) 

The system of ordinary differential equations (22) and (38) is solved 
using the Runge-Kutta method with appropriately specified initial and 
boundary conditions. 
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