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In this study, the thickness of discontinuities computed by tangent hyperbola interpolation for interface capturing
(THINC) and Runge-Kutta (RK) schemes are investigated using a linear advection equation. First, characteristics

of two variants of the THINC scheme are investigated: one is modified THINC scheme the maximum and minimum
of hyperbolic tangent of which are based on neighbor cell and the other is original THINC scheme the maximum

and minimum of hyperbolic tangent of which are fixed to be 1 and 0, respectively. The results show that the

thickness fo discontinuity of the modified THINC scheme is far from the targeted one and one of the original
THINC scheme agrees well with the target one, when the target thickness is smooth. On the other hand, the

thickness of both schemes are almost the same and becomes slightly smoother than targeted one, when the target

thickness is sharp. This illustrates the accuracy of the modified THINC scheme is acceptable for the practical
simulations in which the sharper interface is given. Then, characteristics of THINC and RK schemes with various

CFL number are investigated. When the odd-number-stage RK schemes investigated in this study are adopted

with the CFL number of higher than the certain value, the overshoots are observed. On the other hand, such
overshoots do not appear when the even-number-stage RK schemes investigated in this study are adopted. These

result illustrate that we should take care of kinds of RK schemes and CFL numbers, to avoid the overshoot and

realize the robust computation.

1. Introduction

Recently, various two-phase flow computations are
conducted. There are two ways to treat the interface of
two-phase flows: interface capturing and interface track-
ing methods. Here, interface capturing methods employ
a smoothed (diffused) interface on the grid points, while
the tracking methods adopt the sharp interface across
the grid points. A volume of fluid (VOF) method is usu-
ally categorized into interface capturing methods. Thus
far, the interface is computed with piecewise-linear-
interface-calculation (PLIC) methods or its variants in
the VOF methods.

Although the PLIC method or its variants work
well for capturing sharp interface, their procedure is
relatively complicated. Therefore, alternative simpler
methods have been proposed and improved. One of
them is a tangent hyperbola for interface capturing
(THINC) scheme.(1) In the THINC scheme, advection
equation of the volume fraction is solved with the re-
construction based on the hyperbolic tangent function.
The THINC scheme has been modified(2−4) and applied
to various problems.

One of the applications of the THINC scheme is
compressible two-phase flow.(5,6) Thus far, the THINC
scheme is applied to the five equation formulation(6)

and the two-fluid modeling.(5) In the compressible two-
phase flow simulation, the more robust variant of the
THINC scheme is sometimes used for the compressible
fluid simulations in which the minimum and maximum
of hyperbolic tangent function is set to be minimum
and maximum of neighbor cells. The characteristics of
this variant has not also been clarified. Also, in the com-
pressible two-phase flow simulation, the volume fraction
is not conserved and usually solved with the Runge-
Kutta time integration method, though the formulation
for the incompressible flow on the structured mesh is
sometimes solved by exact time integration method with
the Strang type dimension-by-dimension splitting by as-
suming the conservation of volume. However, the char-
acteristics of the THINC scheme combined with the RK
scheme have not been clarified with changing the CFL
number.

In this presentation, for the future compressible two-
phase flow simulations, two characteristics above are
investigated: 1) effects of a robust implementation of
the THINC scheme and 2) effects of the CFL num-
ber or choice of RK schemes on THINC and RK

schemes. These effects are investigated by using the
one-dimensional linear advection equation.
2. Formulation and Metrics

In this paper, following linear advection equations are
solved by THINC and RK schemes:

∂u

∂t
+
∂f

∂x
= 0, (1)

f = u. (2)

Here, the initial condition is set to be

u = { 0 0.25 ≤ x ≤ 0.75

1 otherwise (3)

with the computational domain of 0 ≤ x < 1 and peri-
odic boundary conditions.

A finite volume method is used for the discretization.
The semidiscretized form of equation (1) is as follows:

∂ūj
∂t

= Rj (4)

Rj = − 1

∆x

(
fj+1/2 − fj−1/2), (5)

where ūj is the discretized cell-averaged quantity on the
jth grid point and fj+1/2 is the numerical flux and is
given by the following equation:

f = uL. (6)

Here, uL is interpolated variable on the left side of cell
edge. In the original THINC scheme it is computed
as follows. First, the distribution of u in the cell is
reconstructed by the hyperbolic tangent function.

u(x) =
1

2
(1 + tanh(β(aX + d))) , (7)

X =
x− xj−1/2

xj+1/2 − xj−1/2
, (8)

where a is determined by the gradient of the volume
fraction and b is determined to adjust the cell average
of the hyperbolic tangent function to the given ū. The
calculation formula of a and b for the given profile is
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Fig. 1: Schematic of discontinuity thickness.

described in the reference.(3,5) Here, β is the parameter
which determines the sharpness of the interface: Larger
β gives the sharper interface as shown later. It should
be note that the hyperbolic tangent function with mini-
mum of 0 and maximum of unity is used for the original
THINC scheme.

As noted in the introduction, in the modified robust
THINC scheme, the minimum and maximum values of
hyperbolic tangent function are set to be those of neigh-
bor cells. In this case, Eq. 9 is modified as follows:

u(x) = umin +
umax − umin

2
(1 + tanh(β(aX + d))) ,

(9)

umin = min(uj−1, uj+1), (10)

umax = max(uj−1, uj+1). (11)

In this case, the monotonicity of the interpo-
lated variables are maintained and the robustness is
improved.(6,7)

With regard to the time advancement, the Euler ex-
plicit, Runge-Kutta and exact time integration schemes
are used.

Then, the metrics for evaluation of results are defined
here. First, the discontinuity thickness is used for the
metrics of sharpness of the interface. In this paper, two
kinds of discontinuity thickness are introduced. One is
slope-based thickness, and the other is 99%-based thick-
ness. Here, the slope-based thickness is defined as fol-
lows:

nslope =
∆ujump

max(|uj − uj+1|)
, (12)

where the discontinuity jump ∆fjump is set to be unity
in this problem. On the other hand, the 99%-based
thickness is defined as follows:

n99% =
1

∆x

(
x| u−umin

∆ujump
=0.01

− x| u−umin
∆ujump

=0.99

)
. (13)

Here, umin is minimum value of the initial condition
which is set to be 0 in this problem. A schematic of
these discontinuities is shown in Fig. 1. If the exact
hyperbolic tangent distribution is assumed, the discon-
tinuities are functions of only the one parameter β in
the hyperbolic tangent function as shown in Fig. 2.

In addition to the sharpness of the interface, the ro-
bustness is important for the kinds of multiphase flow
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Fig. 2: Ideal values of discontinuity thickness for as-
sumed profiles.

simulation. The computation often fails when the neg-
ative volume fraction appears. In order to avoid such a
situation, the overshoot and the undershoot should be
prevented. Therefore, the percentage of the overshoot
are used for the metrics of the robustness, whereas the
percentage of the undershoot of this problem is exactly
the same as that of overshoot. The zero percent of the
overshoot are preferred for the robust simulations.

Those metrics are measured during the duration 1 <
t < 2, in which the discontinuities make second round
and the distribution becomes almost in the quasi-steady
state. The discontinuity thicknesses are obtained by
taking the average in the duration, while the overshoot
is evaluated by taking the maximum.

3. Comparison of Original and Modified Ro-
bust THINC Schemes

In this section, the discontinuities computed by the
original and modified robust THINC schemes are dis-
cussed. Because the CFL number and choice of RK
schemes affect the results for the larger-CFL-number
condition as discussed later in the next section, we use
the two-stage second-order SSP RK scheme with the
CFL number of 0.1 which is sufficiently small for ob-
taining the CFL number independent solution.

In these condition, no overshoots are observed owing
to the smaller CFL number. Therefore, the only dis-
continuity thickness is discussed here. Fig. 3 shows the
discontinuities computed by the two THINC schemes,
together with the ideal values based on the assumed pro-
file. For both discontinuities, the discontinuities of the
modified robust THINC scheme becomes much thicker
than those of original one, which is close to the ideal
values based on the assumed profile, for smaller β con-
dition (β < 1.8), i.e. the much diffused condition. On
the other hand, the clear differences are not observed for
larger β condition (β > 1.8) in which the discontinuities
of both original and modified robust THINC schemes
have discrepancies from the ideal values based on the
assumed profile. This results suggest that the disconti-
nuities computed by the modified robust THINC scheme
are different from the assumed profile in the condition
in which the discontinuities are captured with sufficient
points, while the modified robust THINC scheme works
as well as original scheme in the condition in which the
discontinuities are captured with a few points as in the
practical simulations. This implies the modified robust
THINC scheme seems to be a good candidate for the
practical simulations.
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Fig. 3: Discontinuity thickness for various β of original
and modified THINC schemes.
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Fig. 4: Overshoots for various RK schemes and CFL
numbers.

4. Comparison of THINC and RK Schemes
with Various CFL numbers
In this section, the effects of the CFL number and

choice of RK schemes on the discontinuities computed
by the original THINC schemes combined by the RK
time-advancement schemes. In the series of tests, we set
1.5 ≤ β ≤ 2.7 with CFL numbers of 0.1, 0.2, 0.3, 0.4,
0.5, and 0.6 for each scheme: Euler, two-stage second-
order SSP, three-stage third order SSP schemes and ex-
act time integration.

First, the overshoot characteristics are discussed. In-
terestingly, we do not have any overshoot in the two-
stage second-order SSP RK scheme and exact time in-
tegration. This characteristic is also observed in the
four-stage second-order SSP RK scheme which is not
shown for brevity and the results implies that the even-
number-stage SSP RK scheme might not have any over-
shoot. On the other hand, results of the odd-number-
stage SSP RK scheme are shown in Fig. 4. Results
show that the overshoot is observed for the Euler ex-
plicit scheme with the CFL number of larger than 0.25
and for the three-stage third-order SSP RK scheme with
the CFL number of larger than 0.4. This results suggest
that the CFL number should be carefully chosen for the
odd-number-stage SSP RK schemes.
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Then, the discontinuity thickness is discussed. The
results for two discontinuity thicknesses are shown in
Figs 5 and 6. Interestingly, the discontinuity thick-
ness becomes larger with increasing the CFL number
for the two-stage second-order SSP RK scheme, while
it becomes smaller with increasing CFL number for the
three-stage third-order SSP RK scheme. Meanwhile,
the discontinuity thickness of the exact time integration
does have strong dependency on the CFL number. Here,
the Euler explicit scheme have similar characteristics to
the three-stage third order SSP RK scheme, though we
do not show the results for the Euler explicit scheme
for the brevity. These result suggest that the Euler ex-
plicit and three-stage third order SSP RK schemes (i.e.
maybe even-number-stage SSP-RK schemes) have the
characteristics that the discontinuity becomes sharper
with increasing the CFL number and it causes the over-
shoot characteristics of those scheme in the larger CFL
number condition owing to the sharper discontinuities.
5. Conclusions

In this study, the thickness of discontinuities com-
puted by tangent hyperbola interpolation for interface
capturing (THINC) and Runge-Kutta (RK) schemes are
investigated using a linear advection equation. First,
characteristics of two variants of the THINC scheme are
investigated: one is modified THINC scheme the maxi-
mum and minimum of hyperbolic tangent of which are
based on neighbor cell and the other is original THINC
scheme the maximum and minimum of hyperbolic tan-
gent of which are fixed to be 1 and 0, respectively. The
results show that the thickness fo discontinuity of the
modified THINC scheme is far from the targeted one
and one of the original THINC scheme agrees well with
the target one, when the target thickness is smooth. On
the other hand, the thickness of both schemes are almost
the same and becomes slightly smoother than targeted
one, when the target thickness is sharp. This illustrates
the accuracy of the modified THINC scheme is accept-
able for the practical simulations in which the sharper
interface is given. Then, characteristics of THINC and
RK schemes with various CFL number are investigated.
When the odd-number-stage RK schemes investigated
in this study are adopted with the CFL number of
higher than the certain value, the overshoots are ob-
served. On the other hand, such overshoots do not ap-
pear when the even-number-stage RK schemes investi-
gated in this study are adopted. These result illustrate
that we should take care of kinds of RK schemes and
CFL numbers, to avoid the overshoot and realize the
robust computation.
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