
October 23, 2015 18:21

The 29th Computational Fluid Dynamics Symposium

Your Paper No.

Advanced GPU Direct-MPI Hybrid Framework with

Block-Based Data Structure for Efficient AMR on

Multi-GPU Systems
© Un-Hong Wong, Tokyo Institute of Technology, 2-12-1 i7-3 O-okayama, Meguro-ku, Tokyo 152-8550,

Takayuki Aoki, Tokyo Institute of Technology, 2-12-1 i7-3 O-okayama, Meguro-ku, Tokyo 152-8550,

GPUs have been widely utilized in acceleration to scientific computations in recent years because of its high FLOPS
(floating-point operations per second). However, due to the limited memory of a single GPU, the use of multi-GPU

systems needs to be explored for large-scale simulations. GPUs provides extremely high computing power but the

data communication is relatively slow which bottlenecks the performance of multi-GPU systems. In this paper,
our GPU Direct-MPI hybrid framework for efficient data communication of large-scale grid-based simulation on

multi-GPU systems is presented. A new block-based structured for efficient Adaptive Mesh Refinement (AMR) is
also presented. An application of our framework to large-scale global magnetohydrodynamic (MHD) simulation

of the solar wind interaction with Earth’s magnetosphere is presented. The performance analysis of shows that

using AMR with our framework saved 1.166 GB (25%) memory for each GPU with about 7% speedup for a
computational domain of 5123.

1. Introduction

Computing power is a critical resource in numeri-
cal simulation including computational fluid dynamic
(CFD) and magnetohydrodynamic (MHD), especially
at large-scale. Large-scale high resolution simulations
require huge computational power and usually needs to
be run on supercomputers or clusters for hours, days or
even weeks to get the results. This is a consequence of
the high resolution, complexity of the calculation dur-
ing each step and because the simulation results are
time dependent. Scientists and researchers are in need
of a faster hardware or methods to speedup their simu-
lation. This is the reason that general-purpose comput-
ing on graphics processing units (GPGPU) has become
popular. Graphics processing units (GPUs) used to be
the graphics acceleration hardware for boosting up the
calculations in computer graphics. Due to its high par-
allelism, GPUs have been used as an accelerator and
now play an important role in high performance com-
puting (HPC). Thousands of researches using GPGPU
to achieve fast computation results have been published
in the past decade.

Data processed using a GPU had to be loaded to the
dedicate memory of the GPU board — the device mem-
ory (GRAM). The capacity of the device memory on a
single GPU is limited. Thus, multi-GPU systems are
needed for large-scale simulations. However, the data
transfer between multiple GPUs used to be done by a
GPU-CPU-GPU approach — copy the data from the
device memory of a GPU to host memory, and then
to the device memory of another GPU. Therefore, the
data communication between GPUs bottlenecks the ef-
ficiency of the simulations on multi-GPU systems. Sev-
eral techniques and approaches were raised to address
this problem including our GPU Direct-MPI parallel
data communication (1)(2).

The resolution or size of the calculation domain of the
numerical simulation depend by the amount of mem-
ory of the system. When the computational complex-
ity is high, the resolution or calculation domain will
be limited since more memory might be arranged for
the use of the numerical scheme. In HPC, there is
always a trade-off between memory and performance.
In many cases, especially for parallel computing, users
“pay” more memory to “gain” performance. For exam-
ple, large-scale simulations running on supercomputer
or cluster require halo grid points and some additional
buffers for data communication, which is not necessary

for a simulation running on a standalone machine. For
multi-processes/multi-threading simulation code, each
process/thread has to have its own memory space for
the intermediate results (we call it workspace hereafter)
in the calculation of the numerical scheme. Therefore,
it requires more memory of each node than a single
process/thread simulation code. Higher percentage of
memory usage has to be allocated to the workspace and
less memory can be used for the computational domain
and the simulation results. Nowadays, memory of a
high-end workstation or computing node of cluster is
large. However, GRAM of a GPU is relatively small for
the requirement of large-scale MHD simulations.

In this paper, we present a novel approach of han-
dling the whole mesh (computational domain) block-
by-block(we name it “block-based structure”) to save
to memory usage of GPU computing while retaining
the performance using multi-GPU systems. Efficient
adaptive mesh refinement (AMR) on multi-GPU sys-
tems is developed using our approach. An application to
large-scale global magnetohydrodynamic (MHD) simu-
lation of the solar wind interaction with Earth’s mag-
netosphere is presented. Many optimization techniques
are also introduced and huge amount of memory can be
saved using AMR of our framework. As a result, we are
able to enlarge the simulation domain to reproduce the
full structure of the magnetosphere.

2. GPU Direct-MPI hybrid parallel data com-
munication for distributed multi-GPU systems

Distributed multi-GPU systems or GPU clusters pro-
vide extremely high computation speed. However, the
data transfer speed is comparatively slow. Hence, data
communications between GPUs and computing nodes
bottleneck the efficiency of numerical simulation using
distributed multi-GPU systems. Enhancement of data
communications directly reflect the total efficiency gain.
A GPU Direct-MPI hybrid parallel data communica-
tion of our efficient CFD/MHD simulation framework
for distributed multi-GPU systems has been presented
in our previous work (1)(2). In this section, we would
like to review our GPU Direct-MPI hybrid parallel com-
munication in brief.

Instead of MPI, our GPU Direct-MPI hybrid parallel
data communication utilizes GPU Direct 2.0 of CUDA
(3) for intra-node data communication between the
GPUs as shown in Fig. 1 which perform large speedup

1 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

Node

NodeNode

MPI

MPI GPU Direct Transfer

Process

GPU

Process

GPU

Process

GPU

Process

GPU

Process

GPU

Process

GPU

Node

MPI

Process

GPU GPU GPU

Process

GPU GPU GPU

Bu!er of data transfer

Fig. 1: Flat MPI (top) and our GPU Direct-MPI hybrid
data communication (bottom)

for the data communication. On the other hand, the
usage of host memory as the buffer for MPI data trans-
fer can also be reduced. In our experiment tests, the
total memory usage of an ideal MHD simulation with
the resolution 12963 can be reduced to 81% (3D decom-
position) and 60% (1D decomposition) running on 216
GPUs of TSUBAME 2.5 (4)(5).

Our GPU Direct-MPI hybrid parallel data communi-
cation is a 2-layer data communication model. Multiple
GPUs within a single node is handled by a single pro-
cess which is not related to MPI. On the top layer, users
only have to consider that there is only one partition per
node and there is only one MPI RANK for each parti-
tion (each node). On the GPU layer, the partition will
be decomposed again and copy to each GPU. Moreover,
data communication between GPUs is done by peer-to-
peer data communication and no MPI is invoked in this
layer. In 3D decomposition, the data communication in
the other 2 directions are done by copying the data of
each GPU from/to the different part of a single buffer.
Boundary data to be copied to another node via MPI
will be copied to a continuous memory space (device
memory) for alignment and then being copied to a sin-
gle host buffer. Non-blocking copy is used so that all the
GPUs can copy the data from/to the host buffer simul-
taneously. As a result, Significant speedup is achieved
by our GPU Direct-MPI hybrid parallel data communi-
cation.

3. A Block-Based Structure for Efficient AMR
on Multi-GPU Systems

In this section, we describe the detail of our block-
based structure. To explain the principle, we first take a
look into to the numerical scheme of a partial differences
equation (PDE) and see how it relates to a simulation
program. As an example, a PDE is shown in Fig. 2,
where the following descriptions are given:

• The physics quantities U and F are reflected to
data storage and data structure (for example :
meshes or particles)

• ∂x is related to the data access between the ele-
ments – the stencil computation.

• ∂t is related to the programming flow – the se-
quence of the simulation code

The definition of our block-structure for mesh-based
simulation is given as the follows:

U

@t
= � F

@x
Time 

Evolution Spatial 
Difference

(Program 
Flow)

(Memory 
Access)

Data structure

Fig. 2: The perspective of how a PDE relates to the
components of a program

Geometry Map

Mesh of the whole domain

Decomposed Blocks

Fig. 3: The block-based structured mesh

• The whole mesh is decomposed into a fixed number
of partitions (called blocks hereafter).

• Each block is a subset of the whole computational
domain, where the resolution of each block may
vary.

• Each block has only one neighbour in each direction
(x+, x−, y+, y−, z+, z−).

• A geometry map is used to link all the blocks, and
also for finding the adjacent block (see Fig. 3).

Our block-based structure motives to give the flexibil-
ity in implementing different scheme/kind of simulation
and efficiency in memory management. Multi-stream
task-parallel and adaptive mesh refinement (AMR)
based on this data structure will be introduced in the
following sections.
3.1 Multi-stream Task Parallel on GPU

In general, the workflow of a mesh-based fluid simu-
lation is :

(1) Calculate F t from the governing equations using
U t (stencil computation)

(2) Evolve U t to U t+dt (for example, using the Runge-
Kutta method)

(3) Boundary condition and addition processes such as
limiters, smoothing, etc.

(4) Repeat from step 1 until the target time is reached.

In these processes, except the main physics quantities
U , many other data such as F t and the intermediate
results of t + dt

n of the Runge-Kutta method have to
be generated. Each of these intermediate results gen-
erally requires the same number of data (grid points)
of U for parallel computing. For example, even there
is not a except resolution is mentioned, Fukazawa et
al. reported that 64 MB/core had been used for the
computational domain where additional 192 MB/core
for the workspaces for the computation scheme in (6).
In our block-based structure, a block is a unit to be
processed. Therefore, the storage of the intermediate

2 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

U

Task running on Stream 1

Bu!er Pool

Stencil Calculation 0

Stencil Calculation 1

.

.

.

Calculation Sequence

Task running on Stream 2

Bu!er Pool

Stencil Calculation 0

Stencil Calculation 1

.

.

.

Calculation Sequence

Fig. 4: Multi-stream task parallel on GPU with the
block-based structure(same task)

U

Task running on Stream 1

Bu!er Pool

Stencil Calculation 0

Stencil Calculation 1

.

.

.

Calculation Sequence

of Interior Grids

Task running on Stream 2

Bu!er Pool

Stencil Calculation 0

.

.

.

Calculation Sequence

with

Booundary Condition

Fig. 5: Multi-stream task parallel on GPU with the
block-based structure(different tasks)

results is only required to be the same size as the block.
In fact, even on the many-core GPUs, it is not yet pos-
sible to process all the data of a large mesh at once. In
addition, the memory space is defined as a buffer pool
and will be reused to store the intermediate results in
each calculation step. As a result, a lot of memory of
the intermediate results is saved for a larger simulation
domain. As shown in Fig. 4, the calculation sequence
with the buffer pool is defined as a task, and multi-
ple streams for concurrent kernel execution are applied
to fully utilize the computing power of the GPU. Each
stencil calculation is a CUDA kernel. Moreover, it is
possible to launch multiple tasks with different calcula-
tion kernels. For example, as shown in Fig. 5, a task
for the calculation of the interior grids and another task
that calculates the boundary grid with the boundary
condition are launched in parallel.

3.2 Adaptive mesh refinement

Adaptive mesh refinement techniques (AMR) that au-
tomatically adapt the computational grid to the solu-
tion of the governing PDEs can be very effective in
treating problems with disparate length scales. Let
the resolution of the mesh high enough only in regions
deems of interest (for example the regions with high
gradient), thereby saving orders of magnitude in com-
puting resources for many problems. For example, in
large-scale global MHD simulation of the solar wind
interaction with magnetosphere, for typical solar wind
flows, length scales can range from tens of kilometers in
the near Earth region to the Earth-Sun distance (1 AU
' 1.5 × 1011m), and timescales can range from a few
seconds near the Sun to the expansion time of the solar
wind from the Sun to the Earth (∼ 105s). The use of
AMR is extremely beneficial for solving problems with

A

B
D

C

A

Root

B

D

C

Level

0

1

2

3

Fig. 6: Tree data structure for AMR

such disparate spatial and temporal scales.

In general implementations, a hierarchical tree data
structure and additional interconnects between the
“leaves” of the trees is used to keep track of mesh refine-
ment and the connectivity between solution blocks. As
shown in Fig. 6, the blocks of the initial mesh are the
roots, which are stored in an indexed array data struc-
ture. Associated with each root is a separate “octree”
data structure that contains all of the blocks making
up the leaves of the tree which were created from the
original parent blocks during mesh refinement. Each
grid block corresponds to a node of the tree. Traversal
of the tree structure by recursively visiting the parents
and children of solution blocks can be used to deter-
mine block connectivity. However, in order to reduce
overhead associated with accessing solution information
from adjacent blocks, the neighbors of each block are
computed and stored directly, providing interconnects
between blocks in the hierarchical data structure that
are neighbors in physical space.

AMR is a method that, partitions blocks of a mesh
into different resolution (level) to save the computation
time and memory usage. However, additional processes
of calculations or data exchange of the halo between
partitions at different levels are needed. Since data
communication is relatively slow compare to comput-
ing, these additional process between grid blocks with
different levels cause a huge overhead for AMR on multi-
GPU systems. AMR generally uses tree data structure
to mange the partitioning where each leaf has the same
resolution. Therefore, grid blocks with different levels
can have multiple neighbors in one direction. We found
that this cause large overhead in data communication
and greatly decreases the efficiency of AMR on GPUs.
Many implementations of AMR on GPU such as (7) use
the CPU to help data management and communication.
However, such approaches cause a lot of data communi-
cations in copying the data of the leaves between GRAM
and host memory in each calculation step. In our frame-
work, all the data are stored in GRAM entirely until
the simulation ends. AMR is straightforward to be iim-
plemented by changing the resolution of each block of
our block-base structure (see Fig. 7). In our approach,
number of neighbors in each direction is limited to 1
no matter the level between two neighboring blocks are
different or not. This is very effective in reducing the
overheads of data communication in AMR.

3 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

Geometry Map

Mesh of the whole domain

Decomposed Blocks (AMR)

Fig. 7: AMR of the block-based structure

4. Application to Large-scale Global MHD
Simulation

In this section, a large-scale global MHD simulation
of solar wind interacting the Earth’s magnetosphere
implemented using our GPU Direct-MPI hybrid par-
allel framework will be presented. For applications to
large-scale space simulation, we extend our global MHD
simulation (8) for distributed multi-GPU systems using
GPU Direct-MPI hybrid framework. Data communi-
cation between each GPU and computing node is han-
dled by our framework. AMR is implemented using our
block-based structure. In additional, several optimiza-
tion techniques are introduced.
4.1 Simulation model and numerical scheme

Our global MHD simulations using multiple GPUs
of a workstation can be referred to our previous work
(8). It had been extend to large-scale using distributed
multi-GPU system and presented in (1). The MHD
equations are solved by a GPU implemented modified
leapfrog scheme (see Fig. 8) for simulating the solar
wind interacting with the Earths magnetosphere. The
modified leapfrog scheme is used to solve the MHD
equations and Maxwell’s equations. The PDEs are
listed as the follows :

∂ρ
∂t = −∇ · (vρ) +D∇2ρ

∂v
∂t = −(v · ∇)v − 1

ρ∇p+ 1
ρ (J×B) + g + Φ

ρ

∂p
∂t = −(v · ∇)p− γp∇ · v +Dp∇2p

∂B
∂t = ∇× (v ×B) + η∇2B

J = ∇× (B−Bd)

The modified leapfrog method is a combination of the
two-step Lax-Wendroff scheme and the leapfrog scheme,
proposed by Ogino et al.(9). In each sequence l, the first
time step is calculated using the two-step Lax-Wendroff
scheme and the subsequent l − 1 time steps are calcu-
lated using the leapfrog scheme. These steps will be re-
peated until the calculation reaches the target time step.
The modified leapfrog scheme adopts both the numer-
ical stabilization of the two-step Lax-Wendroff scheme
and the numerical attenuation of the leapfrog scheme to
provide numerical results in a way that is much more
stable than using one of the two schemes individually.
The analysis and experiments in (9) suggest that l = 8
is the optimal number for the modified leapfrog scheme
to provide stable results.

where ρ is the plasma density, v the velocity, B the
magnetic field vector, and p the plasma pressure. Bd
is the magnetic field of a planet. In our test case —
the solar wind interaction with the Earth’s magneto-
sphere, Bd is the magnetic dipole as the approxima-
tion of the Earth’s magnetic field. Φ ≡ µ∇2v is the
viscosity. η is the resistivity, which was taken to be
uniform throughout the simulation box with the range
0.0001 ≤ η ≤ 0.002 for the magnetospheric configura-

tion, g = −g0/ξ
3 (ξ =

√
x2 + y2 + z2, g0 = 1.35× 10−7

fn-1 fn fn+1fn-1/2 fn+1/2

Δt

1st step 2nd step

l - 1

Time steps

1 Time step

1 Time step

l - 1

Time steps

Two-step

Lax-Wendroff

scheme

Leapfrog

scheme

Two-step

Lax-Wendroff

scheme

Leapfrog

scheme

Fig. 8: Illustration of the modified leapfrog scheme

(9.8 m/s2)) is the force of gravity, and γ = 5/3 is the
ratio of specific heat. D is the diffusion coefficient of
particles and Dp is the diffusion coefficient of pressure.
Coefficient µ was artificially assigned in order to control
numerical vibration of the short wavelength resulting
from an initial value or a rapid magnetic field change,
and let D = Dp = µ/ρsw = 0.001, where ρsw is the solar
wind density. Re = 6.37 × 106 m is the radius of the
Earth. The simulation model is shown in Fig. 9. The
interplanetary magnetic field (IMF) is set to Bz = −5
nT. Solar wind comes as the constant source along the
x-axis from the upstream boundary at x = x0 to the
outflow boundary at x = x1. For brevity, other detailed
parameters and settings are spared here and can be re-
ferred to (1), (8) and (9).

4.2 Optimization techniques

In this section, several optimization techniques to en-
hance the performance of the simulation are going to
be introduced. According to the definition, each block
only has one neighbour in each direction which reduces
the overheads of the data communication between grid
blocks at different levels. However, there are still 9
neighbours (see Fig. 10) between one pair of the high
and low level grids in a three dimensional simulation
and the overhead is quite big. We found that when up-
dating the halo region of the low level grid points from
the high level grid points (we refer to this as H2L copy
in the following sections. Conversely, updating the high
level grid points from the low level grid points will be re-
ferred to as L2H copy.) using linear interpolation, halo
grid points of the high level grid can be ignored. On the
other hand, if the halo region of the low level grid is up-
dated, the halo grid at the corner as well as the border
of the high level grid can also be updated from the ad-

4 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

Bow shock

Magnetopause

Plasma sheet

z

x

y

x0 x1

z0

y

Solar

wind

0

-y
0

-z0

Fig. 9: Simulation domain of solar wind interacting
with the Earth’s magnetosphere

Halo at the corner : 4 neighbors

Halo at the face : 1 neighbor

Halo at the border : 4 neighbors

Fig. 10: The 9 neighbours for updating one slice of the
halo (in one direction) of a 3D mesh-based simulation.

jacent grid (as shown in Fig. 11). Therefore, to achieve
further speedup, the following strategy is applied:

(1) Copy the data between all blocks with the same
level.

(2) H2L copy with 9 neighbors in each direction (ig-
nores the duplicated corner and border).

(3) L2H copy with 1 neighbor in each direction.

In this data communication sequence, neighbor access
in the L2H copy is reduced to 1. Besides, peer-to-peer
access of GPU Direct is used in the interpolation kernel
to update the halo grid points. Therefore, no additional
buffer for storing the interpolation results is required,
resulting in savings in memory usage.

In AMR, refine the resolution (changing the level) of
a block is time consuming, especially for GPU comput-
ing. According to the modified leapfrog scheme (Fig. 8),
when the Lax-Wendroff scheme is processed every 8
steps, value of the of grid points of (i+ 1

2 , j + 1
2 , k + 1

2 )
will be interpolated again. The results of last step does
not have to be kept. Therefore, we only process the re-
finement every 8 steps to skip the interpolation of the
grid points of (i+ 1

2 , j + 1
2 , k + 1

2 ) itself.
Constant value such as the dipole field Bd which is

invoked in the simulation, is stored in texture memory.
Texture memory is a special feature of GPU which not
only provides fast read with a specific texture cache, but
also perform fast linear interpolation. Even though it

Interior Grids Halo Grids

Grid points Interpolated Grid points

Fig. 11: The interpolation of grid points between dif-
ferent level

only supports single precision, the accuracy is enough
for the constant value.

5. Results and analysis

Performance tests of large-scale global MHD simula-
tion achieved 4.38 TFLOPS in double precision for a
computational domain of 1980× 1320× 1320 using 216
GPUs using our efficient GPU Direct-MPI hybrid data
communication. The results had been shown in our pre-
vious work (1). In this paper, we would like more focus
on the new block-based structure as well as our AMR
simulation implemented using our framework. First, to
show the efficiency of our block-based structure on GPU
computing, measurement of our global MHD simulation
on a single GPU will be discussed. In our tests without
AMR, memory usage of our MHD simulation with a res-
olution of 2563 requires 1.025 GB for the main physics
quantities, another 1.025 GB for the physics quantities
at the half grid points (needed by the modified leapfrog
scheme) and 2.45 GB for the workspace. By using our
block-based structure and decomposed the mesh into
4 × 4 × 4 = 64 blocks, the memory usage is 1.125 GB
for the main physics quantities, another 1.125 GB for
the physics quantities at the half grid points and 0.056
GB for the workspace, respectively. A huge number of
memory of 2.394 GB is saved for the workspace. Even
though 0.1 GB is increased in the usage of main physics
quantities and the half grid points data, because of the
buffer (halo) for the data communication between the
blocks. In total, our block-based structure save 2.194
GB.

In application our framework to global MHD simu-
lation, the gradient of the pressure field is used as the
metric to determine the blocks with the highest reso-
lution when applying AMR to the simulation. In our
experiment, AMR in three dimension largely increase
the overhead of data communication between the blocks
with different level. On the other hand, additional pro-
cess for load balancing between each GPU is needed.
Therefore, we only refine the mesh along the x-direction.
As it shown in Fig. 12, the blocks of the large gradient of

5 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

GPU 0

GPU 1

}
}
.
.
.

Fig. 12: Image illustrates the blocks with different level
(Note that it is not the real resolution). Refining the
mesh along x-direction and distribute to each GPUs by
the other direction for less communication overhead and
well load balancing. Red lines show the partition of the
blocks.

the pressure field are refined to the highest level. The
neighboring blocks in y-direction(similarly, z-direction
too) are also refined as the same level. In this method,
H2L and L2H copy only needed in x-direction. More-
over, we distribute the partition domains to each GPU
in y and z direction. So that all the GPUs contain the
same number of grid points (load balance). In our per-
formance test with 5123 resolution using 2 K40c and
2 K80 GPUs. Our approach reduce the total mem-
ory usage from 4.670 GB to 3.504 GB for each GPU
and speedup the simulation from 1070.19 ms/step to
938.406 ms/step. Therefore, 25% memory save and 13%
speedup are achieved. However, the process of refin-
ing the blocks requires additional 7304.87 ms to pro-
cess the refinement even though using our optimization
technique to reduce the interpolation. How frequent
the mesh is being refined is depending on the testing
problem, the user defined height level of spatial scale
and the timescale δt. In our tests, the frequency of
mesh refinement is varying but never happens within
every 128 steps. If we add up a approximate refinement
(7304.87/128) = 57.069 ms/step to the total elapse
time, which is 938.406 + 57.069 = 995.475 ms/step, 7%
speedup is achieved in total efficiency.

Use of the block-base structure allows us to
save the memory usage.Therefore, we able to
extend the simulation domain from (x, y, z) =
(−60Re,−30Re,−30Re) ∼ (30Re, 30Re, 30Re)
to (x, y, z) = (−70Re,−70Re,−70Re) ∼
(70Re, 70Re, 70Re) with the same multi-GPU sys-
tem. Therefore, the simulation domain is enlarged
about 8.47× (as shown in Fig. 13). The extended
domain is large enough to cover the boundary of the
bow shock as well as the whole magnetosphere in the y
and z direction.

It is not only extend the simulation domain for inves-
tigating the natural phenomenon in the widely region of
the space. But also benefit in improving the simulation
model. Due to the lack of computational resourcese,
the simulation domain of the solar wind and Earth’s

Fig. 13: Simulation domain enlarge from
(x, y, z) = (−60Re,−30Re,−30Re) ∼ (30Re, 30Re, 30Re)
to (x, y, z) = (−70Re,−70Re,−70Re) ∼ (70Re, 70Re, 70Re)
(8.47×) using AMR implemented with our framework

magnetosphere interaction introduced many existing re-
searches including the model introduced by Ogino et al.
9 doesn’t include the whole magnetosphere in y and z
direction. Neumann boundary condition at 45 degrees
to the x-axis was applied to to y = y0 and z = z0
boundary as shown in the following Fig. 14. The reason
for this boundary condition setting is the assumption of
making the magnetic field align with the blow shock but
the computation is not efficient and gives some restric-
tions in decompose the domain because of the needed of
accessing the neighboring grid points along 45 degree.
This problem is solved and the Neumann boundary con-
dition (Fig. 15) is applied to the y and z boundary in
our extended simulation domain using AMR. Result-
ing in simpler and efficient calculation of the y and z
boundary condition.

Bow shock

Magnetopause

Plasma sheet

z

x

y

x0 x1

z0

y

Solar

wind

0

-y
0

Fig. 14: The boundary condition at 45 degrees to the
x-axis

6 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

Bow shock

Magnetopause

Plasma sheet

z

x

y

x0 x1

z0

y

Solar

wind

0

-y
0

Fig. 15: Enlarged simulation domain which contains
the whole magnetosphere with Neumann boundary con-
dition.

3D Visualization of the simulation results (p:pressure)
of our global MHD simulation of the whole magneto-
sphere with AMR are shown in following Fig.16 and
Fig.17.

6. Conclusion

Performing large-scale MHD simulations on dis-
tributed multi-GPU systems provides us an opportu-
nity to perform numerical simulations in a more efficient
manner. However, the overhead caused by the data
communication bottlenecks simulation performance. To
overcome this problem, we proposed a GPU Direct
- MPI hybrid framework and achieved significant en-
hancement compared to flat MPI implementations of
fluid simulations using multi-GPU systems. GPUs pro-
vide extremely high computing power but the amount of
memory is relatively small. Adaptive Mesh Refinement
is a effective technique to reduce the memory usage and
computing time for large-scale simulation. However, the
memory access and data management of GPU is very
slow compare to its computing power. This cause the
difficulty in implementing an efficient AMR on GPU.
In many cases, traditional implementation method of
AMR on CPU lost the benefit when applying to GPU.

In this paper, a new block-based structure for task
parallel and efficient adaptive mesh refinement on multi-
GPU systems is developed to save the memory usage
while retaining the efficiency. Application of our frame-
work to global MHD simulation as well as several tech-
niques are introduced. Simulation results and analysis
are shown. In our global MHD simulation of the so-
lar wind interaction with the Earth’s magnetosphere,
we use low level blocks in the region of in front of the
bow shock to achieve the same resolution of the mag-
netosphere as a 5123 mesh using 2 K40c and 2 K80
GPUs. Our AMR reduces the 25% memory usage and
about 7% speedup the simulation is achieved. By fully
utilized the memory of the GPUs using AMR of our
framework, we are able to enlarge the simulation do-
main to cover a widely region of the space which con-
tains the whole magnetosphere. Inter-node data com-
munication via MPI is still a bottleneck since a D2H
and H2D copy is needed before and after the MPI com-
munication. GPU Direct RDMA is a feature that can
speedup the inter-node data communication. Unfortu-
nately it is not yet available on TSUBAME 2.5. We are
looking forward to improve the efficiency using GPU
Direct RDMA after the next upgrade of TSUBAME
completes.

Fig. 16: 3D visualization of our simulation results (p)
of the whole magnetosphere interacting with the solar
wind

7 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium

Your Paper No.

Fig. 17: 3D visualization (p)of our simulation results
(p) of the whole magnetosphere interacting with the so-
lar wind (cont.)

Acknowledgements

This research was supported in part by the Japan So-
ciety for the Promotion of Science (KAKENHI), Grant-
in-Aid for Scientific Research (B) 23360046 and Grant-
in-Aid for Scientific Research (S) 26220002 from the
Ministry of Education, Culture, Sports, Science and
Technology (MEXT) of Japan, and Japan Science and
Technology Agency (JST) Core Research of Evolutional
Science and Technology (CREST) research programs on
Highly Productive, and High Performance Application
Frameworks for Post Petascale Computing.

References

(1) U.H. Wong, T. Aoki, and H.C. Wong, “Effi-
cient large scale MHD simulations: 3D OT vor-
tex and Solar Wind-Earth interaction using dis-
tributed multi-GPU system”, Proc. 27th CFD
Symp., (2013).

(2) U.H. Wong, T. Aoki, and H.C. Wong, “Efficient
magnetohydrodynamic simulations on distributed
multi-GPU systems using a novel GPU Direct-MPI
hybrid approach”, CPC, 185(2014), pp. 1901-1913.

(3) https://developer.nvidia.com/category/zone
/cuda-zone

(4) T. Endo, A. Nukada, S. Matsuoka, and N.
Maruyama, “Linpack evaluation on a supercom-
puter with heterogeneous accelerators”, Proc. 24th
IEEE International Parallel and Distributed Pro-
cessing Symp. (IPDPS10), 2010.

(5) G. S. Information, T. I. o. T. Computing Cen-
ter, TSUBAME 2.5 hardware software specifi-
cations, http://www.gsic.titech.ac.jp/sites/
default/files/spec25e1.pdf

(6) K. Fukazawa and T. Umeda, “Performance mea-
surement of magnetohydrodynamic code for space
plasma on the typical scalar type supercomputer
systems with the large number of cores”, Interna-
tional Journal of HPC Applications, (2012).

(7) H.Y. Schive, Y.C. Tsai, and T. Chiueh, “GAMER:
A graphic processing unit accelerated adaptive-
mesh-refinement code for strophysics”, The Astro-
physical Journal Supplement Series, 186(2)(2010),
pp. 457-484.

(8) U.H. Wong, H.C. Wong, Y. Ma, “Global magne-
tohydrodynamic simulations on multiple GPUs”,
CPC, 185(2014), pp. 144-152.

(9) T. Ogino, R. J. Walker, and M. Ashour-Abdalla,
“A global magnetohydrodynamic simulation of the
magnetosheath and magnetopause when the in-
terplanetary magnetic field is northward”, IEEE
Trans. on Plasma Sci., 20(1992), pp. 817-828.

(10) T. Shimokawabe, T. Aoki, and N. Onodera,
“Framework for Block-type AMR method on GPU
computing”, HPCS2013(2013) pp. 156-165.

8 Copyright c© 2015 by JSFM


