The 29th Computational Fluid Dynamics Symposium
B10-3

A GPU Parallel Solver for 3D Incompressible Navier-Stokes

Equations Discretized by Stabilized Finite Element Formulations

(O Huynh Quang Huy Viet, Graduate School of Environ. and Life Sci., Okayama Uni., JST-CREST
Suito Hiroshi, Graduate School of Environ. and Life Sci., Okayama Uni., JST-CREST

Abstract

The discretization of the Navier-Stokes equations stabilized finite element formulations leads to a large and
sparse non-symmetric system of linear equations. The numerical solution of non-symmetric linear systems has
often been solved by using iterative methods such as the Bi-conjugate gradient stabilized method (Bi-CGStab) or
the Generalized minimal residual method (GMRES). Among the variations of the Bi-CGStab algorithm proposed
by various researchers, the GPBi-CG algorithm has been proven to have very good convergence behavior. In this
paper, we propose an efficient GPU implementation of a parallel solver based on the GPBi-CG algorithm for 3D
Navier-Stokes equations discretized by stabilized finite element formulations.

1. Introduction

In solving the Navier-Stokes equations by the finite
element method for simulation of incompressible flows,
there are instabilities which come from the presence
of advection terms and/or the high Reynolds number

of flows. Hughes and Tezduyar et al. (1234 pro-
posed stabilized finite element formulations for incom-
pressible flows. The stabilization in solving the Navier-
Stokes equations is achieved by adding two stabilization
terms to the Galerkin formulations of the Navier-Stokes
equations. The first term is the SUPG (streamline
upwind/Petrov-Galerkin) term and the second term is
the PSPG (pressure stabilizing/Petrov-Galerkin) term.
This stabilized finite element method has been proven to
be very effective in simulation of incompressible flows.

The discretization of the Navier-Stokes equations by
the stabilized finite element formulations leads to a large
and sparse non-symmetric system of linear equations.
The numerical solution of non-symmetric linear sys-
tems has often been solved by using iterative methods
such as the Bi-conjugate gradient stabilized method (Bi-
CGStab) or the Generalized minimal residual method
(GMRES). The Bi-CGStab is a good algorithm espe-
cially when the available memory is relatively small in
relation to the size of system memory. Among the vari-
ations of the Bi-CGStab algorithm proposed by various

researchers, the GPBi-CG algorithm (®) has been proven
to have very good convergence behavior. The GPBi-CG
algorithm can be parallelized by using multicore plat-
forms such as CPU and GPU. Recently, since modern
GPUs have many processors or cores, GPU computing
has been recognized as a powerful platform to achieve
high-performance in scientific computation and also in
simulation of incompressible flows.

In this paper, we propose an efficient GPU imple-
mentation of a parallel solver based on the GPBi-CG
algorithm for 3D Navier-Stokes equations discretized by
the SUPG/PSPG stabilized finite element formulations.

2. Governing equations

Let Q@ € R™ be the spatial domain where ny is the
number of spatial dimensions. We consider the following

dimensionless form of the Navier-Stokes equations (7):

Ou; Ou; Op 1 9 <8ui 8ui>)
) n £,

ot "9z, Ow, | Redz, \oz, o,
(1)
=0 in Q.

(2)

Here and in what follows in the next section, we use
the summation convention over repeated lower indices.
The indices have the values of 1, 2, 3; w; is the velocity
in the i*" dimension, p is the pressure , and Re is the
Reynolds number.

Ou;
8xj

3. Finite element formulations with the
SUPG /PSPG stabilizations

Let us discretize the spatial domain €2 by elements
Q% e =1,2,..,nq. Let S,,V,,S, be finite element
interpolation function spaces for the velocity and the

pressure. The stabilized finite element formulations of
the equations (1)-(2) with the SUPG/PSPG stabiliza-

tion terms can be written as follows 4 7 find u; € S,,
and p € S, such that Vw; € V,, and Vg € V;:

ou; ou Ow;
/ (ot "]5’%)(& Q 3$ide

1 80.12- 8’[141 a’LLj
— dQ
* q Re 0zx; (8xj * 8%‘1')

el _ Ow; [(Ou; _ Ouy dp
+Z:/ TUkaxk (ot +uj(9£6j + axi>d9—0, (3)

ou; ol Oou; _ Ou; Op B
i q@xl dQ+Z/ 312 < +1; 9z, +8xi)dQ =0,
(4)

where 7 is the SUPG/PSPG stabilization parameter. 7
was defined as follows:

S ERCORERINE

Here, the At is the time step size of the computation,
u$ is the element advection velocity, h. is the element
length. The norm of the element advection velocity was
defined as follows:

a7]| = [Z (ﬂ?)] ; (6)

=1

where ng is the number of spatial dimensions. The ele-
ment length h, was defined as follows:

he=? [Z () (525) H "

a=1
where ne, is the number of nodes of the element, N¢
is the interpolation function associated with the node «.

4. GPBi-CG algorithm

The discretization of the Navier-Stokes equation by
the stabilized finite element formulations leads to a large
and sparse non-symmetric system of linear equations.
This linear equation system is solved by using the GPBi-

CG algorithm (%),

Algorithm 1 The unpreconditioned GPBi-CG
x(is an initial guess, 7o = b — Ax,;
Set r§ =ro,t_1 =w_1 =0,8_1 =0;
for n=0,1,... until ||r,|| < ¢€||b]| do
P, =Tn + Bn—l(pn—l - un—l)v
_ _(T3.Tw)
= ;. Ap,)
Y, = tnfl —Thp — QpWy,_1 + anApna
t, =7, — anApna
¢ = (Y, Y,)AL) -y, t.)(At..Y,)
"T(ALAL) Y, Y)Y, A (ALY,
_ (At Aty t)-y, At (AL L)
= (AL, At) Y, Y, -, Al (At.y,)
(if n =0, then ¢, = gtadel = 0),
Up = CnApn + nn(tn—l —Tp+ 6n—1un—1)7
Zn = (uTn + MnZn—1 — Qply,
Tpi1 = Ty +ap, + 2,
Totl =ty — MplYn — AL,
B = an (Po.Tnt1)
n Cn (T§:Tn)
w, = At, + ﬂnApm
end for

5. GPU implementation

http://docs.nvidia.com/cuda/index.htmi

Fig. 1: CUDA multiprocessor architecture

The 29th Computational Fluid Dynamics Symposium
B10-3

CUDA invented by NVIDIA is a parallel comput-
ing platform and programming model. The style of
execution is called Single-Instruction, Multiple-Thread
(SIMT). In SIMT, multiple threads are processed by a
single instruction. CUDA architecture makes comput-
ing on a GPU much more simple. To implement the
GPBi-CG algorithm on the GPU platform, we devel-
oped the library functions for calculating matrix and
vector on GPU as follows:

e MYV - matrix vector product
e DOT - inner product
e AXPBY - add a multiple of one vector to another

e SCAL - scale a vector by a constant
We used the Thrust parallel algorithms library (19)

provided by NVIDIA in the CUDA toolkit to develop
the above library functions.

6. Performance results

Fig. 2: Fluid domain and its tetrahedral mesh

We consider a problem which consists of an object
immersed in a fluid domain as shown in Fig. 2. Start-
ing from a STL mesh as shown in the upper part of Fig.
2, we created tetrahedral meshes with different resolu-
tions by using the open source software NETGEN. All
calculations were carried out using an HPC with the
following hardware specifications:

e Intel Xeon CPU E5630, 2.53GHz,

e GPU NVIDIA Tesla C2070,

e 24 GB System Memory.

The computational conditions are as follows:

e CUDA 7.0,

NVIDIA’s CUDA Compiler (NVCC), GCC 4.4.7,

Double precision,

e Compiler options: -O2 -arch=sm_20,

Stopping criteria of the GPBi-CG algorithm:
[Irnll/110]] < 10712,

Diagonal pre-conditioner.

We measured the execution times during first 50 time
steps of the CPU serial execution and the GPU parallel
execution. Tab. 1 shows the results. The GPU exe-
cution is 13.7 times faster the CPU execution for the
large mesh with 3238815 elements. The speed-up ratio
increases proportionally to the number of elements of
meshes.

Tab. 1: Speed-up ratios and execution times

Mesh Size GPU CPU Speed
#Node #Element Time Time Up

59572 307509 902s 4575s 5.1
115810 638447 2292 s 13143 s 5.7
489346 3238815 34h 46.6h 13.7

The pressure distributions on a cross section at the
time step 1500 of the CPU execution and GPU ex-
ecution are shown in Fig. 3. It appears that these
distributions are similar in every details.

T T
LHH:H:‘I‘H
IR IR
KR!
N

P

Fig. 3: Pressure distributions on a cross section at the
time step 1500 of the CPU execution (above) and the
GPU execution (below)

The 29th Computational Fluid Dynamics Symposium
B10-3

7. Conclusions

We propose an efficient implementation of a GPU
parallel solver based on the GPBi-CG algorithm
for 3D Navier-Stokes equations discretized by the
SUPG/PSPG stabilized finite element formulations. In
further research, we plan to improve the current im-
plementation by employing multigrid pre-conditioners.
We also plan to extend this work to parallelization
across multiple GPUs.

REFERENCES
(1) Shakib F., Hughes T.R.J., Johan Z., “A new fi-

nite element formulation for computational fluid
dynamics: X. The compressible Euler and Navier-
Stokes equations”, Computer Methods in Ap-
E)lied)Mechanics and Engineering, 89, pp. 141-219
1991).

(2) Franca L.P., Frey S.L., Hughes T.J.R., “Stabi-
lized finite element methods: I. Application to the
advective-diffusive model”, Computer Methods in
Applied Mechanics and Engineering, 95, pp. 235-
276, (1992).

(3) Tezduyar T.E., Mittal S., Ray S.E., and Shih R.,
“Incompressible flow computations with stabilized
bilinear and linear equal order interpolation veloc-
ity pressure elements”, Computer Methods in Ap-
plied Mechanics and Engineering, 95, pp. 221-242,
(1992).

(4) Tezduyar T.E., “Stabilized finite element formula-
tions for incompressible flow computations”, Ad-
vances in Applied Mechanics, 28, pp. 1-41 (1991).

(5) Zhang S.L., “GPBi-CG: Generalized product-type
methods based on Bi-CG for solving nonsymmetric
linear systems”, STAM J. Sci. Comput., 18, pp. 537-
551, (1997).

(6) Fujino S., Sekimoto T., “Performance evaluation of
GPBiCGSafe method without reverse-ordered re-
currence for realistic problems”, Lecture Notes in
{Engin)eering and Computer Science, pp. 1673-1677

2012).

(7) Nihon Keisan Kogaku-kai Nagare no Yugen Yoso-
ho Kenkyu lin-kai, “Simulation of flows by finite
element method - Continued”, Maruzen Publish-
ing, (2012), (in Japanese).

(8) Kawata H., “Numerical simulation of cerebrospinal
fluid flow from MRI images using finite element
method”, unpublished Master Thesis, Academic
Year 2011, Graduate School of Environmental
Studies, Okayama University, (in Japanese).

(9) Dziekonski A., Sypek P., Lamecki A.; Mrozowski
M., “Finite element matrix generation on a GPU”,
Progress In Electromagnetics Research, vol. 128,
249-265, 2012.

(10) http://docs.nvidia.com/cuda/thrust/

ACKNOWLEDGEMENTS

This work is supported by JST-CREST (Japan Sci-
ence and Technology Agency, Core Research for Evolu-
tional Science and Technology). The first author would

like to acknowledge Mr. Ryota Yamane (Okayama Uni-
versity) for technical support.

