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Abstract

The discretization of the Navier-Stokes equations stabilized finite element formulations leads to a large and
sparse non-symmetric system of linear equations. The numerical solution of non-symmetric linear systems has

often been solved by using iterative methods such as the Bi-conjugate gradient stabilized method (Bi-CGStab) or

the Generalized minimal residual method (GMRES). Among the variations of the Bi-CGStab algorithm proposed
by various researchers, the GPBi-CG algorithm has been proven to have very good convergence behavior. In this

paper, we propose an efficient GPU implementation of a parallel solver based on the GPBi-CG algorithm for 3D

Navier-Stokes equations discretized by stabilized finite element formulations.

1. Introduction

In solving the Navier-Stokes equations by the finite
element method for simulation of incompressible flows,
there are instabilities which come from the presence
of advection terms and/or the high Reynolds number
of flows. Hughes and Tezduyar et al. (1, 2, 3, 4) pro-
posed stabilized finite element formulations for incom-
pressible flows. The stabilization in solving the Navier-
Stokes equations is achieved by adding two stabilization
terms to the Galerkin formulations of the Navier-Stokes
equations. The first term is the SUPG (streamline
upwind/Petrov-Galerkin) term and the second term is
the PSPG (pressure stabilizing/Petrov-Galerkin) term.
This stabilized finite element method has been proven to
be very effective in simulation of incompressible flows.

The discretization of the Navier-Stokes equations by
the stabilized finite element formulations leads to a large
and sparse non-symmetric system of linear equations.
The numerical solution of non-symmetric linear sys-
tems has often been solved by using iterative methods
such as the Bi-conjugate gradient stabilized method (Bi-
CGStab) or the Generalized minimal residual method
(GMRES). The Bi-CGStab is a good algorithm espe-
cially when the available memory is relatively small in
relation to the size of system memory. Among the vari-
ations of the Bi-CGStab algorithm proposed by various
researchers, the GPBi-CG algorithm (5) has been proven
to have very good convergence behavior. The GPBi-CG
algorithm can be parallelized by using multicore plat-
forms such as CPU and GPU. Recently, since modern
GPUs have many processors or cores, GPU computing
has been recognized as a powerful platform to achieve
high-performance in scientific computation and also in
simulation of incompressible flows.

In this paper, we propose an efficient GPU imple-
mentation of a parallel solver based on the GPBi-CG
algorithm for 3D Navier-Stokes equations discretized by
the SUPG/PSPG stabilized finite element formulations.

2. Governing equations

Let Ω ∈ Rnd be the spatial domain where nd is the
number of spatial dimensions. We consider the following
dimensionless form of the Navier-Stokes equations (7):
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Here and in what follows in the next section, we use
the summation convention over repeated lower indices.
The indices have the values of 1, 2, 3; ui is the velocity
in the ith dimension, p is the pressure , and Re is the
Reynolds number.

3. Finite element formulations with the
SUPG/PSPG stabilizations

Let us discretize the spatial domain Ω by elements
Ωe, e = 1, 2, ..., nel. Let Su, Vu, Sp be finite element
interpolation function spaces for the velocity and the
pressure. The stabilized finite element formulations of
the equations (1)-(2) with the SUPG/PSPG stabiliza-
tion terms can be written as follows (4, 7): find ui ∈ Su
and p ∈ Sp such that ∀ωi ∈ Vu and ∀q ∈ Vp:
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where τ is the SUPG/PSPG stabilization parameter. τ
was defined as follows:
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Here, the ∆t is the time step size of the computation,
ūei is the element advection velocity, he is the element
length. The norm of the element advection velocity was
defined as follows:

‖ūei‖ =

[
nd∑
i=1

(ūei )

]− 1
2

, (6)

where nd is the number of spatial dimensions. The ele-
ment length he was defined as follows:
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where nen is the number of nodes of the element, Ne
α

is the interpolation function associated with the node α.

4. GPBi-CG algorithm

The discretization of the Navier-Stokes equation by
the stabilized finite element formulations leads to a large
and sparse non-symmetric system of linear equations.
This linear equation system is solved by using the GPBi-
CG algorithm (5).

Algorithm 1 The unpreconditioned GPBi-CG

x0 is an initial guess, r0 = b−Axo;
Set r∗0 = r0, t−1 = w−1 = 0, β−1 = 0;
for n = 0, 1, ... until ||rn|| ≤ ε||b|| do
pn = rn + βn−1(pn−1 − un−1),

αn =
(r∗

0 ,rn)

(r∗
0 ,Apn)

,

yn = tn−1 − rn − αnwn−1 + αnApn,
tn = rn − αnApn,

ζn =
(yn,yn)(Atn,tn)−(yn,tn)(Atn,yn)

(Atn,Atn)(yn,yn)−(yn,Atn)(Atn,yn)
,

ηn =
(Atn,Atn)(yn,tn)−(yn,Atn)(Atn,tn)

(Atn,Atn)(yn,yn)−(yn,Atn)(Atn,yn)
,

(if n = 0, then ζn = (Atn,tn)

(Atn,Atn)
, ηn = 0),

un = ζnApn + ηn(tn−1 − rn + βn−1un−1),
zn = ζnrn + ηnzn−1 − αnun,
xn+1 = xn + αpn + zn,
rn+1 = tn − ηnyn − ζnAtn,

βn = αn

ζn

(r∗
0 ,rn+1)

(r∗
0 ,rn) ,

wn = Atn + βnApn;
end for

5. GPU implementation

Fig. 1: CUDA multiprocessor architecture

CUDA invented by NVIDIA is a parallel comput-
ing platform and programming model. The style of
execution is called Single-Instruction, Multiple-Thread
(SIMT). In SIMT, multiple threads are processed by a
single instruction. CUDA architecture makes comput-
ing on a GPU much more simple. To implement the
GPBi-CG algorithm on the GPU platform, we devel-
oped the library functions for calculating matrix and
vector on GPU as follows:

• MV - matrix vector product

• DOT - inner product

• AXPBY - add a multiple of one vector to another

• SCAL - scale a vector by a constant

We used the Thrust parallel algorithms library (10)

provided by NVIDIA in the CUDA toolkit to develop
the above library functions.

6. Performance results

Fig. 2: Fluid domain and its tetrahedral mesh

We consider a problem which consists of an object
immersed in a fluid domain as shown in Fig. 2. Start-
ing from a STL mesh as shown in the upper part of Fig.
2, we created tetrahedral meshes with different resolu-
tions by using the open source software NETGEN. All
calculations were carried out using an HPC with the
following hardware specifications:

• Intel Xeon CPU E5630, 2.53GHz,

• GPU NVIDIA Tesla C2070,

• 24 GB System Memory.

The computational conditions are as follows:

• CUDA 7.0,

• NVIDIA’s CUDA Compiler (NVCC), GCC 4.4.7,

• Double precision,

• Compiler options: -O2 -arch=sm 20,

• Stopping criteria of the GPBi-CG algorithm:
||rn||/||b|| < 10−12,

• Diagonal pre-conditioner.

2 Copyright c© 2015 by JSFM



The 29th Computational Fluid Dynamics Symposium
B10-3

We measured the execution times during first 50 time
steps of the CPU serial execution and the GPU parallel
execution. Tab. 1 shows the results. The GPU exe-
cution is 13.7 times faster the CPU execution for the
large mesh with 3238815 elements. The speed-up ratio
increases proportionally to the number of elements of
meshes.

Tab. 1: Speed-up ratios and execution times

Mesh Size GPU CPU Speed
#Node #Element Time Time Up

59572 307509 902 s 4575 s 5.1
115810 638447 2292 s 13143 s 5.7
489346 3238815 3.4 h 46.6h 13.7

The pressure distributions on a cross section at the
time step 1500th of the CPU execution and GPU ex-
ecution are shown in Fig. 3. It appears that these
distributions are similar in every details.

Fig. 3: Pressure distributions on a cross section at the
time step 1500th of the CPU execution (above) and the
GPU execution (below)

7. Conclusions

We propose an efficient implementation of a GPU
parallel solver based on the GPBi-CG algorithm
for 3D Navier-Stokes equations discretized by the
SUPG/PSPG stabilized finite element formulations. In
further research, we plan to improve the current im-
plementation by employing multigrid pre-conditioners.
We also plan to extend this work to parallelization
across multiple GPUs.
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