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Abstract

The discretization of the Navier-Stokes equations stabilized finite element formulations leads to a large and
sparse non-symmetric system of linear equations. The numerical solution of non-symmetric linear systems has
often been solved by using iterative methods such as the Bi-conjugate gradient stabilized method (Bi-CGStab) or
the Generalized minimal residual method (GMRES). Among the variations of the Bi-CGStab algorithm proposed
by various researchers, the GPBi-CG algorithm has been proven to have very good convergence behavior. In this
paper, we propose an efficient GPU implementation of a parallel solver based on the GPBi-CG algorithm for 3D
Navier-Stokes equations discretized by stabilized finite element formulations.

1. Introduction

In solving the Navier-Stokes equations by the finite
element method for simulation of incompressible flows,
there are instabilities which come from the presence
of advection terms and/or the high Reynolds number

of flows. Hughes and Tezduyar et al. (1234 pro-
posed stabilized finite element formulations for incom-
pressible flows. The stabilization in solving the Navier-
Stokes equations is achieved by adding two stabilization
terms to the Galerkin formulations of the Navier-Stokes
equations. The first term is the SUPG (streamline
upwind/Petrov-Galerkin) term and the second term is
the PSPG (pressure stabilizing/Petrov-Galerkin) term.
This stabilized finite element method has been proven to
be very effective in simulation of incompressible flows.

The discretization of the Navier-Stokes equations by
the stabilized finite element formulations leads to a large
and sparse non-symmetric system of linear equations.
The numerical solution of non-symmetric linear sys-
tems has often been solved by using iterative methods
such as the Bi-conjugate gradient stabilized method (Bi-
CGStab) or the Generalized minimal residual method
(GMRES). The Bi-CGStab is a good algorithm espe-
cially when the available memory is relatively small in
relation to the size of system memory. Among the vari-
ations of the Bi-CGStab algorithm proposed by various

researchers, the GPBi-CG algorithm (®) has been proven
to have very good convergence behavior. The GPBi-CG
algorithm can be parallelized by using multicore plat-
forms such as CPU and GPU. Recently, since modern
GPUs have many processors or cores, GPU computing
has been recognized as a powerful platform to achieve
high-performance in scientific computation and also in
simulation of incompressible flows.

In this paper, we propose an efficient GPU imple-
mentation of a parallel solver based on the GPBi-CG
algorithm for 3D Navier-Stokes equations discretized by
the SUPG/PSPG stabilized finite element formulations.

2. Governing equations

Let Q@ € R™ be the spatial domain where ny is the
number of spatial dimensions. We consider the following

dimensionless form of the Navier-Stokes equations (7):
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Here and in what follows in the next section, we use
the summation convention over repeated lower indices.
The indices have the values of 1, 2, 3; w; is the velocity
in the i*" dimension, p is the pressure , and Re is the
Reynolds number.
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3. Finite element formulations with the
SUPG /PSPG stabilizations

Let us discretize the spatial domain €2 by elements
Q% e =1,2,..,nq. Let S,,V,,S, be finite element
interpolation function spaces for the velocity and the

pressure. The stabilized finite element formulations of
the equations (1)-(2) with the SUPG/PSPG stabiliza-

tion terms can be written as follows 4 7 find u; € S,,
and p € S, such that Vw; € V,, and Vg € V;:
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where 7 is the SUPG/PSPG stabilization parameter. 7
was defined as follows:
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Here, the At is the time step size of the computation,
u$ is the element advection velocity, h. is the element
length. The norm of the element advection velocity was
defined as follows:
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where ng is the number of spatial dimensions. The ele-
ment length h, was defined as follows:
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where ne, is the number of nodes of the element, N¢
is the interpolation function associated with the node «.

4. GPBi-CG algorithm

The discretization of the Navier-Stokes equation by
the stabilized finite element formulations leads to a large
and sparse non-symmetric system of linear equations.
This linear equation system is solved by using the GPBi-

CG algorithm (%),

Algorithm 1 The unpreconditioned GPBi-CG
x( is an initial guess, 7o = b — Ax,;
Set r§ =ro,t_1 =w_1 =0,8_1 =0;
for n=0,1,... until ||r,|| < ¢€||b]| do
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end for

5. GPU implementation

http://docs.nvidia.com/cuda/index.htmi

Fig. 1: CUDA multiprocessor architecture
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CUDA invented by NVIDIA is a parallel comput-
ing platform and programming model. The style of
execution is called Single-Instruction, Multiple-Thread
(SIMT). In SIMT, multiple threads are processed by a
single instruction. CUDA architecture makes comput-
ing on a GPU much more simple. To implement the
GPBi-CG algorithm on the GPU platform, we devel-
oped the library functions for calculating matrix and
vector on GPU as follows:

e MYV - matrix vector product
e DOT - inner product
e AXPBY - add a multiple of one vector to another

e SCAL - scale a vector by a constant
We used the Thrust parallel algorithms library (19)

provided by NVIDIA in the CUDA toolkit to develop
the above library functions.

6. Performance results

Fig. 2: Fluid domain and its tetrahedral mesh

We consider a problem which consists of an object
immersed in a fluid domain as shown in Fig. 2. Start-
ing from a STL mesh as shown in the upper part of Fig.
2, we created tetrahedral meshes with different resolu-
tions by using the open source software NETGEN. All
calculations were carried out using an HPC with the
following hardware specifications:

e Intel Xeon CPU E5630, 2.53GHz,

e GPU NVIDIA Tesla C2070,

e 24 GB System Memory.

The computational conditions are as follows:

e CUDA 7.0,

NVIDIA’s CUDA Compiler (NVCC), GCC 4.4.7,

Double precision,

e Compiler options: -O2 -arch=sm_20,

Stopping criteria of the GPBi-CG algorithm:
[Irnll/110]] < 10712,

Diagonal pre-conditioner.



We measured the execution times during first 50 time
steps of the CPU serial execution and the GPU parallel
execution. Tab. 1 shows the results. The GPU exe-
cution is 13.7 times faster the CPU execution for the
large mesh with 3238815 elements. The speed-up ratio
increases proportionally to the number of elements of
meshes.

Tab. 1: Speed-up ratios and execution times

Mesh Size GPU CPU Speed
#Node #Element  Time Time Up

59572 307509  902s  4575s 5.1
115810 638447 2292 s 13143 s 5.7
489346 3238815 34h 46.6h 13.7

The pressure distributions on a cross section at the
time step 1500 of the CPU execution and GPU ex-
ecution are shown in Fig. 3. It appears that these
distributions are similar in every details.
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Fig. 3: Pressure distributions on a cross section at the
time step 1500 of the CPU execution (above) and the
GPU execution (below)
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7. Conclusions

We propose an efficient implementation of a GPU
parallel solver based on the GPBi-CG algorithm
for 3D Navier-Stokes equations discretized by the
SUPG/PSPG stabilized finite element formulations. In
further research, we plan to improve the current im-
plementation by employing multigrid pre-conditioners.
We also plan to extend this work to parallelization
across multiple GPUs.
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