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Abstract: Parallel Blocked-Structured Adaptive Mesh Refinement (AMR) is an efficient technology to provide high 

grid resolution with relatively low computer resources. In this short paper, we investigate the efficiency of different 

AMR decomposition and load balance strategies with a new developed 2D Euler equation AMR solver. The high order 

weighted essentially non-oscillation (WENO 3rd, 5th, 7th order) scheme with flux-splitting approach is applied for 

computing problems containing both discontinuities and complex solution features. The performance of the AMR 

solver is validated by 2-D Riemann problems including double-Mach reflection. 

 

 

1. Introduction 

  Numerical simulation of compressible flow is of great important for 

aerodynamic industry and scientific research. Many successful shock 

wave capturing scheme have been developed for predicting the sharp 

discontinuity flow. To eliminate the overshoots and oscillations in the 

vicinity of the discontinuity, the weighted essentially non-oscillatory 

(WENO) scheme was proposed in which an adaptive stencil that adapt to 

the smoothness of the solution is utilized. In this paper, the 3rd, 5th and 7th 

order WENO scheme are developed and compared.  

  There are a number of different AMR approaches listed in the 

literatures (1). Many of them are developed for the usage of the 

unstructured meshes. Unfortunately, for the unstructured mesh, large 

degree of indirect memory referencing is required which will cause a low 

performance on cache-based processors. For the AMR approaches of 

structured mesh (1), we can refine individual grid cells, which can be 

managed by the tree data structure. It avoid the guard cell overhead 

problems associated with blocked structured method. But the resulting 

code is much more complex and difficult to parallelize. Besides, the 

irregular memory referencing will produce relatively low performance. 

While the Blocked structured AMR approach (2) generate an identical 

coding environment of each block. Not so many modifications are 

required to transform from a serial code to parallel AMR code. The 

parallel data transfer is operated among the blocks, not on the grid, 

therefore, many advancing parallel algorithm can be performed. 

   In this paper, we use a high accurate WENO scheme with a 

flux-splitting approach for the compressible Euler equation. The blocked 

AMR is applied for mesh refinement. The double-Mach reflection is 

simulated for validation.  

 

2. Numerical Method 

The two-dimensional Euler equations can be written in a conservative 

form as 

𝜕𝚽

𝜕𝑡
+

𝜕𝐅

𝜕𝑥
+

𝜕𝐆

𝜕𝑦
= 0 

in which 

𝚽 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

]  𝐅 = [

𝜌𝑢

𝑝 + 𝜌𝑢2

𝜌𝑢𝑣
(𝜌𝐸 + 𝑝)𝑢

]  𝐆 = [

𝜌𝑣
𝜌𝑢𝑣

𝑝 + 𝜌𝑣2

(𝜌𝐸 + 𝑝)𝑣

] 

where 

𝑝 = 𝜌(𝛾 − 1) [𝐸 −
1

2
(𝑢2 + 𝑣2)] 

here 𝜌, 𝑢, 𝑣 and 𝑝 are respectively the density, horizontal and vertical 

velocity and pressure; 𝐸 denote the internal energy. 𝛾 is the ratio of 

specific heats.  

  The two-dimensional discretized Euler equation is given as 

𝑑Φ𝑖,𝑗

𝑑𝑡
+

𝐹𝑖+1/2,𝑗 − 𝐹𝑖−1/2,𝑗

Δ𝑥
+

𝐺𝑖,𝑗+1/2 − 𝐺𝑖,𝑗−1/2

Δ𝑦
= 0 

For the Euler equation, convective flux Jacobian matrixes are 

𝐀 =
𝜕𝐅

𝜕𝚽
 

𝐁 =
𝜕𝐆

𝜕𝚽
 

Because the system is hyperbolic, the similarity transformation can be 

written as 

𝐀 = 𝐒−𝟏𝚲𝑨𝐒 

𝐁 = 𝐓−𝟏𝚲𝑩𝐓 

where 𝚲𝑨, 𝚲𝑩  are respectively the diagonal matrix of the real 

eigenvalues of 𝐀 and 𝐁, the columns of 𝐒−𝟏 and 𝐓−𝟏 are the right 

eigenvalues of 𝐀  and 𝐁 , and the row of 𝐒  and 𝐓  are the left 

eigenvalues of 𝐀 and 𝐁 

𝚲𝑨 = 𝑑𝑖𝑎𝑔(𝑢 𝑢 𝑢 + 𝐶 𝑢 − 𝐶) 

𝚲𝑩 = 𝑑𝑖𝑎𝑔(𝑣 𝑣 𝑣 + 𝐶 𝑣 − 𝐶) 

where 𝐶 is the sound speed. The expression of 𝐒−𝟏, 𝐓−𝟏, 𝐒, 𝐓 can be 

found in literature (3). 

  The 𝚲𝑨, 𝚲𝑩 can be split into following 

𝚲𝑨 = 𝚲𝑨
+ + 𝚲𝑨

−,   𝚲𝑩 = 𝚲𝑩
+ + 𝚲𝑩

−  

For x- direction,  

𝐀 = 𝐒−𝟏(𝚲𝑨
+ + 𝚲𝑨

−)𝐒 

The Euler equation become 

𝐒
𝜕𝚽

𝜕𝑡
+ 𝐒

𝜕�́�+

𝜕𝑥
+ 𝐒

𝜕�́�−

𝜕𝑥
=

𝜕𝛀

𝜕𝑡
+

𝜕𝐅+

𝜕𝑥
+

𝜕𝐅−

𝜕𝑥
= 0 

where  

𝛀 = 𝐒𝚽, 𝐅± = 𝐒�́�± 

We use the Lax-Friedrichs approach for the flux vector splitting,  

�́�± =
1

2
[�́�(𝚽) ± 𝛼𝚽] 

where 

𝛼 = 𝑚𝑎𝑥 (𝐹′́ (𝚽)) = 𝑟(𝐀𝒊) = 𝑚𝑎𝑥(|𝑢𝑖|, |𝑢𝑖 + 𝐶𝑖|, |𝑢𝑖 − 𝐶𝑖|) 

if we use the 5th order WENO reconstruction, the left and right flux can be 

written as 

�́�𝑖+1/2
± = ∑ 𝜔𝑘(�́�±)

3

𝑘=1
𝒬𝑘

± 

in which 𝜔𝑘 and 𝒬𝑘
± are the weight and interpolation solution from 

WENO. Note that we should project it into its original formulation.   
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𝐹𝑖+1/2
± = 𝐒−𝟏�́�𝑖+1/2

±  

The 3rd order TVD Runge-Kutta methods for time integration is 

applied for the equation like 
𝑑Φ𝑖,𝑗

𝑑𝑡
= ℛ(Φ) 

Φ(1) = Φ𝑛 − Δ𝑡ℛ(Φ𝑛) 

Φ(2) =
3

4
Φ𝑛 +

1

4
Φ(1) −

1

4
Δ𝑡ℛ(Φ(1)) 

Φ𝑛+1 =
1

3
Φ𝑛 +

2

3
Φ(2) −

2

3
Δ𝑡ℛ(Φ(2)) 

 

3. Adaptive Mesh Refinement Strategy  

Many applications require consistent data used at the boundaries of 

different refinement levels. For instance, the present two-dimensional 

conservative Euler equation, the fluxes entering or leaving a grid cell 

through a common cell face which is shared with 2 cells of a more refined 

neighbor. The sum of the fluxes across the 2 smaller faces need to be 

identical to the flux of its neighbor. In this case, the conservation law 

treatment is required. We adopt the approach of literature (4) by firstly 

modify the boundary fluxes inside the block boundaries. Then we update 

the solution around the blocks boundary immediately after the flux 

correction.  

For simplicity, in present AMR simulation, we use the gradient of 

density to generate the refinement criteria.  

 

4. Numerical Results 

  For the first validation, a double Mach reflection is simulated with the 

new developed AMR solver. The problem was initially proposed and 

studied by Woodward and Colella (5). It has been used extensively in the 

literature as a test for high resolution schemes. The computational domain 

is  [0,4] and [0,1] . The reflecting wall lies at the bottom of the 

computational domain for 1/6 ≤ 𝑥 ≤ 4. Initially, a right moving Mach 

10 shock is positioned at 𝑥 = 1/6, 𝑦 = 0 and make a 60 degree angle 

with the x-axis. The ratio of specific heats 𝛾 = 1.4. The results is 

displayed as following.  

  We use 3 to 7 levels AMR grid for the simulation. As we can see in Fig. 

1, the grids are refined around the shock wave front properly. From the 

local density distribution in Fig. 2, WENO 5th (Fig. 2(b)) and WENO 7th 

(Fig. 2(c)) gives a much better resolution for these complicated flow 

structure than WENO 3rd (Fig. 2(a)) with the same AMR grid resolution.   

   

 

Fig.1 Double Mach reflection problem 

 

5. Conclusion 

  In present research, the compressible Euler equation is solved with a 

high order WENO scheme and flux splitting approach to capture the 

shock wave. Numerical results show that both the blocked structured 

AMR and 3rd to 7th order WENO scheme works well. Future work will 

be focused on the study of AMR refinement criteria of the solver.  

 

(a) 3rd WENO reconstruction 

 

(b) 5th WENO reconstruction 

 

(c) 7th WENO reconstruction 

Fig.2 Blown-up region of the double Mach reflection problem 

 

   

Bibliography 

(1) Plewa, T., Linde, T., & Weirs, V. G. Adaptive mesh 

refinement-theory and applications. In Proceedings of the Chicago 

workshop on adaptive mesh refinement methods (Vol. 41) (2003). 

(2) Rendleman, C. A., Beckner, V. E., Lijewski, M., Crutchfield, W., & 

Bell, J. B. Parallelization of structured, hierarchical adaptive mesh 

refinement algorithms. Computing and Visualization in Science, 

3(3). (2000), pp. 147-157. 

(3) San, O., & Kara, K. Numerical assessments of high-order accurate 

shock capturing schemes: Kelvin–Helmholtz type vortical 

structures in high-resolutions. Computers & Fluids, 89. (2014), pp. 

254-276. 

(4) Deiterding, R. Construction and application of an AMR algorithm 

for distributed memory computers. In Adaptive Mesh 

Refinement-Theory and Applications (2005). pp. 361-372. 

(5) Woodward, P., & Colella, P. The numerical simulation of 

two-dimensional fluid flow with strong shocks. Journal of 

computational physics, 54(1), (1984), pp. 115-173. 

 


