UhlmannのIBM を用いたクエット流中の回転楕円体の 運動シミュレーション

Motion of Spheroid Simulation in Couette Flow using IBM of Uhlmann

 ○ 樫原 勇一,京工繊大院,〒606-8585 京都府京都市左京区松ケ崎御所海道町,E-mail:m4623009@edu.kit.ac.jp 西田 秀利,京工繊大,〒606-8585 京都府京都市左京区松ケ崎御所海道町,E-mail:mishida@edu.kit.ac.jp 田中 満,京工繊大,〒606-8585 京都府京都市左京区松ケ崎御所海道町,E-mail:mtanaka@edu.kit.ac.jp Yuichi Kashihara, Dept.of Mech.and Syst.Eng.,Kyoto Inst.Tech., Matsugasaki,kyoto,606-8585,JAPAN Hidetoshi Nishida, Dept.of Mech.and Syst.Eng.,Kyoto Inst.Tech., Matsugasaki,kyoto,606-8585,JAPAN Mitsuru Tanata, Dept.of Mech.and Syst.Eng.,Kyoto Inst.Tech., Matsugasaki,kyoto,606-8585,JAPAN

Turbulent flows laden with non-spherical particles are encountered in many natural and industrial situations, such as sediment transport, plankton dynamics, and combustion. In the present study, numerical simulations of motion of a finite-size spheroidal particle in Couette flow are performed to examine whether the immersed boundary method of Uhlmann is applicable to the cases of non-spherical particles. Numerical results show good agreement with the theory of Jeffery for both oblate and prolate spheroids.

1. 緒言

粒子を含む乱流は,多くの自然現象や工業装置におい て見られる重要な流れである.例えば,土石流や流砂,攪 拌層や固液分離装置などが挙げられる.このような流れ をシミュレーションする際,流体が有する多数の粒子間の 相互作用の流れ場に与える影響は大きいため,粒子の存 在をより正確に表現する必要性がある.従来,物体形状を 正確に表現する手法としては,物体の境界に沿って計算 格子を配置する境界適合座標系での解析が一般的であっ た.しかし,境界適合座標系では,複数の物体が流体内に 存在する場合,格子形成に要する時間が実際の解析時間 よりも多大になる可能性も想定される.そのため,デカ ルト格子のように格子形成が比較的容易な計算格子上に おいて粒子を表現する必要性が好ましい.そのような手 法の一つとして Uhlmann の埋め込み境界法 (immersed boundary method; IBM)⁽¹⁾ が挙げられる.

Uhlmann の IBM では,粒子境界上にマーカー点とな る格子点を配置し,その格子と計算格子との関係によって 有限サイズの粒子を表現することが可能となる.本手法 を用いて Uhlmann は 4096 個の球形粒子を含む鉛直平板 間上昇乱流の解析を行った⁽²⁾.また,Kempe,Vowinckel and Fröhlich⁽³⁾ はチャネル中を流れる粒子のシミュレー ションを Uhlmann の IBM を用いて行っている.本手法 を用いた研究は前述の研究を合わせ,いずれも球形粒子 に対して適用されている.しかし,流体に含まれる粒子の 形状は一般的に完全な球形ではなく,様々な形状が存在 し,その形状によって粒子の運動は異なると推測される.

例えば、クエット流中の回転楕円体の運動は、長軸と 短軸の比によって変化することがJeffery⁽⁴⁾ によって示さ れており、それによって流れの挙動は大きく変化してい る.そのため、粒子を含む流れをシミュレーションする ためには、球形のみならず様々な形状の粒子を表現する ことが必要である.

そこで、本研究は、非球形な粒子を含む流れ場をシミュ レーションすることを目的として、Uhlmann の IBM を 用いてクエット流中の回転楕円体の運動シミュレーショ ンを行い、計算手法の有効性の検証を行う.

2. 基礎方程式

流れの基礎方程式は、連続の式

$$\frac{\partial u_j}{\partial x_j} = 0 \tag{1}$$

及び, Navier-Stokes 方程式

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho_f} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i + f_i \qquad (2)$$
$$(i = 1, 2, 3)$$

である. ρ_f は流体の密度, f_i は IBM による付加力を表している.また,粒子の並進及び回転の運動方程式は

$$M_c^{(m)} \dot{\boldsymbol{u}}_c^{(m)} = -\rho_f \sum_{l=1}^{N_L} \boldsymbol{F}(\boldsymbol{X}_l^{(m)}) \Delta V_l^{(m)} + \rho_f \frac{d}{dt} \int_{S_m} \boldsymbol{u} dV + V_c^{(m)} (\rho_p - \rho_f) \boldsymbol{g}$$
(3)

$$\begin{aligned} \boldsymbol{I}_{c}^{(m)} \dot{\boldsymbol{\omega}}_{c}^{(m)} &= -\rho_{f} \sum_{l=1}^{N_{L}} (\boldsymbol{X}_{l}^{(m)} - \boldsymbol{x}_{c}^{(m)}) \times \boldsymbol{X}_{l}^{(m)} \Delta V_{l}^{(m)} \\ &+ \rho_{f} \frac{d}{dt} \int_{S_{m}} (\boldsymbol{x} - \boldsymbol{x}_{c}^{(m)}) \times \boldsymbol{u} dV \end{aligned}$$
(4)

と表される.ここで, $u_c^{(m)}$, $\omega_c^{(m)}$, $x_c^{(m)}$, $M_c^{(m)}$, $I_c^{(m)}$, $V_c^{(m)}$, $\rho_c^{(m)}$, S_m はそれぞれm番目の粒子の重心速度,重 心周りの角速度,重心位置,質量,慣性テンソル,体積, 密度,内部領域であり,gは重力加速度である. $F(X_l^{(m)})$ はm番目の粒子の境界上の点 $X_l^{(m)}$ での力であり, N_L は粒子の境界上の点の総数, $\Delta V_l^{(m)}$ は各境界点に対する 体積を表す.

3. 埋め込み境界法 (IBM)

埋め込み境界法 (IBM) は、物体の境界近傍の格子点に 適切な体積力を付加することにより、境界上における滑 りなし条件を満足させる手法である.このとき、物体内 部も外部と同様の流体で満たされているとして計算を行 う、境界近傍に付加する力は、次式より求める.

$$\boldsymbol{f}^{n+\frac{1}{2}} = \frac{\boldsymbol{u}^{(d)} - \boldsymbol{u}^n}{\Delta t} - \boldsymbol{r}\boldsymbol{h}\boldsymbol{s}^{n+\frac{1}{2}}$$
(5)

Fig. 1: Schematic of the immersed boundary.

ここで、 $\mathbf{u}^{(d)}$ はこの力が適用された場合の想定速度である.また、 $rhs^{n+\frac{1}{2}}$ は、次式を表す.

$$\boldsymbol{rhs}^{n+\frac{1}{2}} = -\left\{ (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + \frac{1}{\rho_f} \nabla p - \nu \nabla^2 \boldsymbol{u} \right\}^{n+1/2} \quad (6)$$

物体境界上の点 $oldsymbol{X}_l^{(m)}$ においても,式 (3) が成り立つ ので,

$$\boldsymbol{F}^{n+\frac{1}{2}} = \frac{\boldsymbol{U}^{(d)} - \boldsymbol{U}^n}{\Delta t} - \boldsymbol{R}\boldsymbol{H}\boldsymbol{S}^{n+\frac{1}{2}}$$
(7)

が成り立つ.大文字は境界上の値を表す.物体境界上の 点 $X_l^{(m)}$ での想定速度は

$$\boldsymbol{U}^{(d)}(\boldsymbol{X}_{l}^{(m)}) = \boldsymbol{u}_{c}^{(m)} + \boldsymbol{\omega}_{c}^{(m)} \times (\boldsymbol{X}_{l}^{(m)} - \boldsymbol{x}_{c}^{(m)})$$
(8)

と表される. ここで f = 0 とした NS 方程式を満足する 速度を \tilde{U} とすると,

$$\boldsymbol{F}^{n+\frac{1}{2}} = \frac{\boldsymbol{U}^{(d)} - \tilde{\boldsymbol{U}}}{\Delta t} \tag{9}$$

が得られる.また,格子点上の流速から境界上の値や,境 界上の力から格子点上の値は以下の形の補間を用いて評 価する.

$$\tilde{\boldsymbol{U}}(\boldsymbol{X}_{l}^{(m)}) = \sum \tilde{\boldsymbol{u}}(\boldsymbol{x}) D(\boldsymbol{x} - \boldsymbol{X}_{l}^{(m)}) \Delta x^{3} \qquad (10)$$

$$\boldsymbol{f}(\boldsymbol{x}) = \sum_{m=1}^{N_p} \sum_{l=1}^{N_L} \boldsymbol{F}(\boldsymbol{X}_l^{(m)}) \Delta V_l^{(m)}$$
(11)

ここで Δx は格子幅である(各方向とも格子幅は Δx で ある). また D(x) はデルタ関数を平滑化した関数, N_p は粒子の数である.本研究では D に次式を適用する.

$$D(\boldsymbol{x} - \boldsymbol{X}_{l}^{(m)}) = \frac{1}{\Delta x^{3}} \delta_{h} (z_{1}) \delta_{h} (z_{2}) \delta_{h} (z_{3}) \quad (12)$$
$$z_{i} = \frac{x_{i} - X_{i}^{(m)}}{\Delta x}$$

$$\delta_h(z) = \begin{cases} \frac{1}{8}(3-2|z| + \sqrt{1+4|z|-4z^2}) & 0 \le |z| < 1 \\ \frac{1}{8}(5-2|z| & (13) - \sqrt{-7+12|z|-4z^2}) & 1 \le |z| < 2 \\ 0 & otherwise. \end{cases}$$

また,式 (3)(4)(11) で用いる各境界点の体積は、球の場 合直径を d_p とすると、 $\Delta V_l^{(m)} = \frac{\pi h}{3N_L} (3d_p^2 + \Delta x^2)$ である、本研究では、

$$\Delta V_l^{(m)} = \Delta V \sqrt{e_{ab} e_c^2 \sin^2 \theta_l^{(m)} + e_a^2 e_b^2 \cos^2 \theta_l^{(m)}} \quad (14)$$
$$e_{ab} = e_a^2 \sin^2 \phi_l^{(m)} + e_b^2 \cos^2 \phi_l^{(m)}$$

と与える.ここで、 $\Delta V = \frac{\pi h}{3N_L} (3d_p^2 + \Delta x^2)$ とし、楕円体の各軸長さと d_p との比を e_a, e_b, e_c としている.また、粒子の境界を表すマーカー点はSaff and Kuijilaars⁽⁵⁾によって提案された球に対する式を用いて決定する.マーカー点の3次元極座標 ($\theta_k, \phi_k, d/2$)は以下の様に定義される.

$$\theta_k = \arccos(c_k), \quad c_k = -1 + \frac{2(k-1)}{(N_L - 1)} \quad 1 \le k < N_L$$
(15)

$$\phi_1 = \phi_k = 0, \ \phi_k = \phi_{k-1} + \frac{3.6}{\sqrt{N_L}} \frac{1}{\sqrt{1 - c_k^2}} \ 1 < k < N_L$$
(16)

4. クエット流中の回転楕円体の運動シミュレーション

4.1 解析対象

ここでは、クエット流中の回転楕円体の運動について 考える.回転楕円体粒子は次式で記述される.

$$\frac{x^{\prime 2}}{a^2} + \frac{y^{\prime 2}}{b^2} + \frac{z^{\prime 2}}{c^2} = 1$$
(17)

$$e_a = 2a/d_p, \ e_b = 2b/d_p, \ e_c = 2c/d_p$$

ここで, a, b, c は楕円体の各主軸の半分の長さを表し, 回転楕円体の場合, 3 つのうち 2 つが等しい.また, (x', y', z') は粒子に固定された座標系を意味する. クエッ ト流の主流方向は x 方向であり,速度勾配は y 方向に生 じている.

Fig. 2: Spheroidal particle in Couette flow.

 (N_x, N_y, N_z) は計算領域の格子点数及び大きさを示し, 壁の動く速さは U である.また, Fig.2 に示す通り,そ れぞれ反対方向に動いているものとする.x, z 方向は周 期境界条件とした.粒子レイノルズ数は,

$$Re = \frac{4Gc^2}{\nu} \tag{18}$$

と定義した.ここで、せん断率はG = 2U/h, h は壁間 距離である.

4.2 計算条件

流体との密度比が1である回転楕円体の運動について は、Re = 0のときに Jeffery⁽⁴⁾の理論解に従う.そこで、 Table.1 に示す計算条件の下で扁平な場合 (case A), 扁長 な場合 (case B)のそれぞれについてクエット流中の回転 楕円体の運動シミュレーションを行った.

Tab. 1: Computational condition.

	U	Re	ν	(N_x, N_y, N_z)	(a,b,c)
case A	0.1	0.1	4	128,128,128	16, 16, 8
case B	0.1	0.1	16	128, 128, 128	8, 8, 16

4.3 計算結果

case A の結果を Fig.3 に示す. クエット流中の回転楕 円体の角速度は, $\omega = (0,0,\omega_z)$ であり, z 成分のみとな り, 扁平な粒子の場合, 粒子は一定の角速度で回転する. Fig.3 に注目すると, 粒子の角速度は徐々に大きくなり, Gt = 1 を超えた辺りから Jeffery の理論解に収束してい ることが見て取れる.

Fig. 3: Time development of angular velocity ω_z/G in case A.

次に、収束後の ω_z/G の値と理論解の定量的比較を行う. Table.2 より、 ω_z/G の収束値と理論解との誤差は 3.4%となった.理論解に比べてレイノルズ数が大きいため、収束値が理論解よりも小さくなることが推測される.したがって、3.4%の誤差は定量的に良好であると考えられる.

Tab. 2: Comparision with theoretical solution (case A).

	ω_z/G
Present	0.483
Theoretical	0.500
Error	3.4~%

続いて、case B の結果を Fig.4 に示す. 扁長な粒子の 場合、角速度は時間と共に周期的に変化する. Fig.4 に注 目すると、Gt = 0 付近では、角速度が0 から徐々に大 きくなっているため、理論解とのずれが大きい. しかし、 時間が経過するにつれ、理論解と同様に角速度が周期的 な変化をしていることが分かる. よって、定性的に良好 な結果が得られたと考えられる.

Fig. 4: Time development of angular velocity ω_z/G in case B.

次に、 ω_z/G の極大と極小な点の値を理論解と定量的 比較を行う. Table.3 より、極大点では 0.625 %、極小点 では 1.50 %の誤差であった. 両者ともに 1 %前後の誤差 となり、扁長な粒子の場合においても定量的に良好な結 果が得られたと考えられる.

Tab. 3: Comparision with theoretical solution (case B).

	$(\omega_z/G)_{max}$	$(\omega_z/G)_{min}$
Present	0.795	0.203
Theoretical	0.800	0.200
Error	0.625~%	1.50~%

5. 結論

本研究では、非球形な粒子を含む流れ場のシミュレー ションを目的として、Uhlmannの IBM を用いたクエッ ト流中の回転楕円体粒子の運動シミュレーションを行い、 計算手法の有効性の検証を行った.その結果、扁平な粒 子 (case A)、扁長な粒子 (case B)の両方について定性的 にも定量的にも良好な結果が得られ、回転楕円体に対す る有効性が確認された.

参考文献

- (1) M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics 209, (2005), 448-476.
- (2) M.Uhlmann,Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime, Phys. Fluids, 20, (2008), 053305.
- (3) T. Kempe, B. Vominckel and J. Fröhlich, On the relevance of collision modeling for interfaceresolving simulations of sediment transport in open channel flow, International Journal of Multiphase Flow 58, (2014), 214-235.
- (4) G. B. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proc. R. Lond. A 102, (1922), 161-179.
- (5) E.B. Saff, A.B. Kuijlaars, The Mathematical Intelligencer, 19-1, (1997), 5-11.