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This paper presents a versatile and Proper Orthogonal Decomposition-based shape optimization method, to 

delay laminar-turbulent transition and to promote a mixing. The main problem is the nonstationary Navier-

Stokes problem, for which time average velocity field is generated to take time integration, and a correction 

coefficient matrix is formed. Eigenvalues of the correction coefficient matrix is defined as the cost function. 

Based on Lagrange multiplier method, the objective cost functional is obtained, and by using Adjoint variable 

method main problem and adjoint problems are solved to evaluate the sensitivity. The two dimensional cavity 

flow used as an initial domain is reshaped iteratively with H1 gradient method which is able to deform stably. 

 

 

 

1. Introduction 

A shape optimization method is able to play important roles in 

flow control, and high speed fluid machinery is designed such as 

airplane’s body, wing and engine inside. Then, to delay laminar-

turbulent transition and to promote a mixing are needed. 

In spite of the flow stability is playing very important roles in 

fluid dynamics and fluid engineering, many existing papers have not 

reported effects of the stability by shape optimization. Thereby, T. 

Nakazawa [1] reported that the minimizing and maximizing problem 

of the dissipation energy are solved in the two dimensional cavity 

flow and the flow stability is changed indirectly by the optimization 

process, where the stationary Navier-Stokes problem is used as the 

main problem.  

Next, T. Nakazawa and H. Azegami [2] suggested a new 

pioneering shape optimization method to make the disturbances 

stable directly, in which a real parts of the leasing eigenvalues is 

used as the cost function and the stationary Navier-Stokes problem 

and its eigenvalue problem are defined as the main problems. By 

the way, T. Nakazawa [3], the author tried to increase the critical 

Reynolds numbers more by combining the two kind of shape 

optimization problems. In particular, using the optimal domain 

obtained in [1] as an initial domain, the minimizing problem of the 

real part of leading eigenvalues constructed in [2] are solved. 

This paper presents a more versatile shape optimization method by 

using Proper Orthogonal Decomposition (POD) in the view point of 

“Data Science”. 

 

2. The nonstationary Navier-Stokes Problem 

Let Ω ⊂ ℝ𝑑 be a bounded Lipschitz domain for 𝑑 = 2, a two 

dimensional Cavity flow is considered. The initial domain depicts 

Ω0 ⊂ Ω in particular 

 

Ω0 = ΩFull ∖ ΩCirc, 

ΩFull = {𝒙 = (𝑥, 𝑦)| 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 }, 

ΩCirc = {𝒙 = (𝑥, 𝑦)| (𝑥 − 0.5)
2 + (𝑦 − 0.5)2 = 0.12 }, 

 

∂Ω0 = Γtop ∪ Γwall 

Γtop = {(𝑥, 𝑦)| 0 ≤ 𝑥 ≤ 1, 𝑦 = 1 }, Γwall = ∂Ω0 ∖ Γtop . 

 

For one of main problems, the nonstationary Navier-Stokes 

problem is used, 

 

D𝒖

D𝑡
= −𝛻𝑝 +

1

Re
Δ𝒖, 𝛻 ⋅ 𝒖 = 0, 

 

where velocity vector and pressure are depicted as 𝒖 ∈ 𝑈  and 

𝑝 ∈ 𝑃, and Re represents the Reynolds number, 

 

𝑈 = {

𝒖 ∈ 𝐻1(Ω, ℝ2); 

𝒖 = (16𝑥2(𝑥 − 1)2, 0) cos(𝜋𝑡) on Γtop,

𝒖 = 𝟎 on Γwall

}, 

𝑃 = {𝑝 ∈ 𝐿2(Ω, ℝ);∫ 𝑝𝑑𝑥
𝛀

= 0 in Ω}. 

 

For all (𝒗, 𝑞) ∈ 𝑉 × 𝑃, the weak form is as follows; 

 

∫ {
D𝒖

D𝑡
⋅ 𝒗 − (𝛻 ⋅ 𝒗)𝑞 − (𝛻 ⋅ 𝒖)𝑝 + 𝛻𝒖T: 𝛻𝒗T}

Ω

𝑑𝑥 = 0. 

 

where 𝑉 = {𝒖 ∈ 𝐻1(Ω, ℝ2); 𝒖 = 𝟎 on ∂Ω0}.  By discretizing in 

time with the characteristic curve method, the following weak form 

to obtain {(𝒖𝑛, 𝑝𝑛)}𝑛=1
𝑁  is derived, 

 

∫

{
 
 

 
 𝒖

𝑛+1(𝒙) − 𝒖𝑛(𝒙 − Δ𝑡𝒖𝑛(𝒙))

Δ𝑡
⋅ 𝒗𝑛+1

−(𝛻 ⋅ 𝒗𝑛+1)𝑞𝑛+1 − (𝛻 ⋅ 𝒖𝑛+1)𝑝𝑛+1

+𝛻(𝒖𝑛+1)T: 𝛻(𝒗𝑛+1)T }
 
 

 
 

Ω

𝑑𝑥 = 0, 

 

for all (𝒗𝑛, 𝑞𝑛) ∈ 𝑉 × 𝑃 with 𝑛 ∈ [1,𝑁] and the time step 𝑁 ∈ ℕ. 

By the way, the solution of the stationary Navier-stokes problem is 

chosen as the initial condition (𝒖0, 𝑝0). 

 

3. Proper Orthogonal Decomposition 

  At first, taking time integration for the nonstationary Navier-

Stokes problem from 𝑇1 to 𝑇2. Next, correlation coefficient matrix 

𝑅(�̃�, �̃�) ∈ ℝ𝑚×𝑚 is formed where Δ𝑡 depicts the time step size, 

and  

𝑅(�̃�, �̃�) = ∫ �̃�T�̃�𝑑𝑥
Ω

, 
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𝑚 = 𝑁2 − 𝑁1 + 1, 𝑇1 = Δ𝑡𝑁1, 𝑇2 = Δ𝑡𝑁2 

 

Second Proper Orthogonal Decomposition (POD) is used to obtain 

eigenvalues 𝜔 ∈ ℝ𝑚  and functions �̂� ∈ ℝ𝑚×𝑚  by solving 

eigenvalue problem 𝑅(�̃�, �̃�)�̂� = 𝜔�̂�. Finally, we have POD basis 

𝜱 = 𝜔−
1

2�̂��̃� ∈ ℝ𝑚×𝑚. 

 

4. Shape Optimization Problem 

 In the shape optimization problem, the first variation of the 

functional �̇�(𝝓) is the same as the material derivative; 

 

�̇�(𝝓,Ω ∪ Γwall) = ∫ 𝐺′(𝒙, 𝑢, ∇𝑢)
Ω

𝑑𝑥 +∫ 𝐺(𝒙, 𝑢, ∇𝑢)𝝂 ⋅ 𝝋
∂Ω

𝑑𝛾, 

 

where (⋅)′  represents the shape derivative and 𝝂  depicts the 

outward normal vector on the boundary. And more the domain 

variation is defined as 𝝓 = 𝝓𝟎 + 𝝐𝝋 + 𝒐(𝝐
2), where 𝝓

𝟎
 depicts 

the identify map and the function space for 𝝓 ∈ 𝐷 is  

 

𝐷 = {
𝝓 ∈ 𝑊1,∞(Ω,ℝ2);

‖𝝓 −𝝓𝟎‖𝑊1,∞(Ω,ℝ2) < 1,𝝓(Ω)
̅̅ ̅̅ ̅̅ ̅ ⊂ Ω

}. 

 

The main problems are the nonstationary Navier-Stokes 

problem, and an eigenvalue problem of POD. For convenience, we 

define the following functional; 

 

𝐿1(𝝓) =
1

𝑚
∑ ∫ 𝐺1(𝑥, 𝒖

𝑛, 𝑝𝑛, 𝒗𝑛, 𝑞𝑛)
𝝓(Ω)

𝑑𝑥

𝑁2

𝑛=𝑁1

, 

𝐺1(𝑥, 𝒖
𝑛, 𝑝𝑛, 𝒗𝑛, 𝑞𝑛)

=
𝒖𝑛+1(𝒙) − 𝒖𝑛(𝒙 − Δ𝑡𝒖𝑛(𝒙))

Δ𝑡
⋅ 𝒗𝑛+1

− (𝛻 ⋅ 𝒗𝑛+1)𝑞𝑛+1 − (𝛻 ⋅ 𝒖𝑛+1)𝑝𝑛+1

+ 𝛻(𝒖𝑛+1)T: 𝛻(𝒗𝑛+1)T. 

 

For 𝜶 ∈ ℝ𝑚×𝑚  and 𝛿𝑗→𝑘  for extracting from the j primary 

component to the k primary component, 

 

𝐿2(𝝓) =
1

𝑚
∑ 𝛿𝑗→𝑘𝐺2(𝑥, 𝜔, �̂�, �̃�, 𝜶)

𝑁2

𝑛=𝑁1

, 

𝐺2(𝑥, 𝜔, �̂�, �̃�, 𝜶) = {𝜔�̂� − (∫ �̃�T�̃�𝑑𝑥
𝝓(Ω)

) �̂�}𝜶 

 

Based on the above preparations of the functional, the sum of the 

eigenvalues 𝑓(𝝓) is defined as the cost function. So, the objective 

functional is represented by 

 

𝐿(𝜙) = 𝑓(𝝓) − 𝐿1(𝝓) − 𝐿2(𝝓), 

𝑓(𝝓) =
1

𝑚
∑ 𝛿𝑗→𝑘𝜔

𝑛

𝑁2

𝑛=𝑁1

. 

 

Anyway, in the view point of Lagrange multiplier method, the trial 

function (𝒗𝑛, 𝑞𝑛) ∈ 𝑉 × 𝑃 to solve 𝐿1(𝝓) = 0 with FEM is the 

same as the multiplier of the objective functional 𝐿(𝜙), and 𝜶 ∈

ℝ𝑚×𝑚 for �̂�. 

Based on Lagrange multiplier method, we can derive the main 

problem (Section 2 and Section 3) and the adjoint problems. From 

the main problem, it is possible to obtain the solutions 

{(𝒖𝑛, 𝑝𝑛)}𝑛=1
𝑁  and (𝜔, �̂�)  for the nonstationary Navier-Stokes 

problem and the eigenvalue problem for POD. Especially, from the 

adjoint problems we should solve the following partial differential 

equation; 

 

(∇𝒖T)𝒗 + (𝒖 ⋅ 𝛻)𝒗 + 𝛻𝑞 −
1

Re
Δ𝒗 = 2√𝜔𝚽�̂�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝛻 ⋅ 𝒗 = 0. 

 

Finally, by substituting the main variables {(𝒖𝑛, 𝑝𝑛)}𝑛=1
𝑁  and 

(𝜔, �̂�)  and the adjoint variables (𝒗, 𝑞)  and 𝜶  into the first 

variation of the functional, and we can obtain the first variation as  

 

�̇�(𝝓) = ∫ {
1

𝑚
∑

1

Re
{𝛻(𝒖𝑛)T: 𝛻(𝒗𝑛)T}𝝂

𝑁2

𝑛=𝑁1

} ⋅ 𝝋
Γwall

𝑑𝛾, 

 

and the sensitivity is evaluated by 

 

𝝋 = ∫ {
1

𝑚
∑

1

Re
{𝛻(𝒖𝑛)T: 𝛻(𝒗𝑛)T}𝝂

𝑁2

𝑛=𝑁1

}
Γwall

𝑑𝛾. 

 

For numerical calculations, we should smooth 𝝋 with 𝐻1 gradient 

method, because the sensitivity is in 𝐿∞(Ω, ℝ2) and lack of the 

smoothness. 

 

5. Numerical Results 

The suggested shape optimization problem is demonstrated 

at Re=100. For the test calculation, POD is performed to show the 

stream lines for POD basis and eigenvalues in Fig. 1. Next, I 

investigated numerical accuracy by increasing the number of 

elements and vertices depending NN. Fig. 2 shows ω2 with the 

reshaping steps based on NN, and the numerical result is 

asymptotic at NN=130. Finally, I operate the shape optimization 

problem changing 𝛿𝑗→𝑘, and 𝛿1→𝑚 gives us the smaller 

eigenvalues ω2 for the second primary component than the 

shape optimization defining the dissipation energy as the cost 

function. Fig. 4 explains the optimal shape for 𝛿1→𝑚. 

 

6．Numerical Results 

In this study, the shape optimization method for flow stability 

control is suggested, where the cost function is defined as the sum 

of the eigenvalues based on POD and the nonstationary Navier-

Stokes problem is used as the main problem. 𝛿1→𝑚 gives us the 

smaller eigenvalues ω2 for the second primary component than 

the shape optimization defining the dissipation energy as the cost 

function. 
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(a) The first primary component (ω1 = 0.151706) 

 

 

(b) The second primary component (ω2 = 0.0221411) 

 

 

(c) The third primary component (ω3 = 0.00582061) 

Fig. 1. Stream lines for POD basis and eigenvalues. 

 

 

Fig. 2. ω2 with the reshaping steps based on NN. 

 

 

Fig. 3. ω2 with the reshaping steps based on 𝛿𝑗→𝑘. 

 

 

Fig. 4. The optimal shape for 𝛿1→𝑚. 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Fig. 5. The shape improving in 3 dimensional domain. 
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