地面効果を受ける翼の非定常空力特性に関する LES Large-Eddy Simulation on the Unsteady Aerodynamics of a wing in Ground Effect

 金山正俊,北大院,060-8628 札幌市北区北13条西8丁目,E-mail: m_kanayama@eis.hokudai.ac.jp 池田 隼,神戸大院,657-8501 神戸市灘区六甲台町1-1,E-mail: jun_ikeda@port.kobe-u.ac.jp 大島伸行,北大院,060-8628 札幌市北区北13条西8丁目,E-mail: oshima@eng.hokudai.ac.jp 坪倉 誠,神戸大院,657-8501 神戸市灘区六甲台町1-1,E-mail: tsubo@tiger.kobe-u.ac.jp Masatoshi Kanayama, Hokkaido Univ., Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 Jun Ikeda, Kobe Univ., 1-1, Rokkodai-Cho, Nada-Ku, Kobe-Shi, Hyogo 657-8501 Nobuyuki Oshima, Hokkaido Univ., Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 Makoto Tsubokura, Kobe Univ., 1-1, Rokkodai-Cho, Nada-Ku, Kobe-Shi, Hyogo 657-8501

In this study, Large-Eddy Simulation on a simplified airfoil in ground effect is conducted to clarify the feature of turbulent transition and separation at Raynolds number 1,300,000. Unsteady aerodynamics affected by variation of wing heights is investigated. The numerical results are validated by a comparison with a wind tunnel measurement. The characteristics of the numerical results agree with that of the experimental results in terms of mean pressure coefficient on wing lower surface. Visualizing the flow fields around wing of the numerical results, transition structures are observed and the tendency of the turbulent separation point displacements of each wing height is recognized.

1. 緒言

一般に自動車の床下形状はその外観デザインには貢献しない が、走行抵抗の低減といった空力性能面での要求により床下構成 機器をカバーで覆うケースが増えている⁽⁰⁾.カバーは、基本的に は滑らかな形状であるものの、覆う機器の形状に起因した凹凸が あるため、局所的には剥離を伴う翼に類似した形状になっている. このような剥離を伴う翼の空力特性としては、10⁶を超えるレイノ ルズ数において、剥離は層流剥離ではなく乱流遷移した後に剥離 することが知られている⁽²⁾、自動車の実用的な速度条件では、こ のようなレイノルズ数になることから、床下機器カバーの空力特 性を予測するには、乱流剥離を精確に捉える必要がある.加えて、 自動車の床下は地面に面しており、なおかつ路面凹凸をはじめと する外乱によって、車高が変化する.したがって、地面効果の影 響と車高の変化も条件として考慮する必要がある.

本研究では地面効果の影響下において、比較的高いレイノルズ 数での非定常現象である層流剥離、乱流遷移および剥離現象を Large-Eddy Simulation により解析し、地上高変化に伴って生じる 非定常空力現象の解明を試みた.解析結果は風洞実験で得られた 計測値との比較により解析の妥当性を検証し、その後、流れ場の 可視化および考察を行った.

2. 解析対象および実験装置

解析には図1に示すモデル化した翼型を用いた. 乱流遷移およ び剥離を発生するためのキャンバーを翼下面に持つ. 翼上面の流 れが下面の剥離に与える影響を少なくするためリーディング・エ ッジおよびトレーリング・エッジ付近を水平にし,その間を大き な曲率を持つ曲面でつないだ。翼の前後長0.44mに対して0.11m のスパン長および解析領域を設定した. 両端を壁面境界に接続し, 解析結果の翼端板形状や地面とのクリアランスへの依存性を排し た。流入速度は44.444 m/s (160 km/h),両側壁および天井は自由滑 り条件を与えた. 比較対象とする風洞実験では、ムービングベル トを用いて、地面に発達する境界層影響を排除した. そこで、本 解析では主流と同じ流速を床面に与えた. 翼表面には境界層内の 速度勾配と乱流剥離を正確に捉えるため、第一層の厚さに注意を 払いプリズム層を積層した. 翼各部の格子解像度を表1に示す. 総要素数は約1,400万要素、計算領域断面積に対する翼のブロッ ケージ・レシオは約2.13%、およびレイノルズ数は翼前後長を代

表長さとして Re=1,300,000 である.

Sideview

overview

Fig. 1 Airfoil shape	
----------------------	--

	resolution	y+
Leading edge	0.15 mm	≒1.2
Wing upper / lower surface	1.0 mm	<1
Trailing edge	0.5 mm	<1

Table. 1 Mesh resolutions around the airfoil.

風洞実験に用いた装置について図2に示す.装置は天井からス トラットを介してムービングベルト上方に固定される.ストラッ トと水平板との間には6分力計を備えている.翼のスパン長は1m である,また図3に丸で示すように翼断面に計19箇所の圧力孔を 設けている.翼はこの圧力孔列を3列備えるが、今回はスパンの 中心列での計測値を解析結果と比較した.翼を上下に変位させた 際にもムービングベルトと翼端板の間隔を5mmに保つよう適切 な厚さのスペーサーを翼端板下に適宜加えている.

Copyright © 2018 by JSFM

3. 解析手法

基礎方程式は空間フィルタ操作を施した非圧縮性の連続の式お よび Navier-Stokes 方程式であり, 乱流モデルには Dynamic Smagorinsky モデル⁽³⁾を用いた.解析には節点ベースの非構造格子 有限体積法に基づく流体解析コード FrontFlow/red-HPC を用いた. 翼の上下への変位には ALE (Arbitrary Lagrangian Eulerian) 法⁽⁴⁾に よる移動境界法を用いた.

Fig. 4 Isosurface of the second invariant of velocity gradient tensors colored by streamwise velocity - oblique bottom view.

Fig. 6 Mean pressure coefficient along airfoil (Experiment).

第 32 回数値流体力学シンポジウム B10-5

4. 解析結果および考察

図4,5に地上高21,27および33mmでの速度勾配テンソルの 第二不変量(Q=1,000,000)等値面を示す.等値面の色は主流方向 速度によって無次元化された速度絶対値を表す.スパン方向に軸 を持つ渦が崩壊し、キャンバー部分で乱流剥離する流れ構造が観 察できる.また図5から地上高が上昇するにつれ遷移の発生が下 流側に移ることがわかる.その原因として地上高が低い場合,層 流剥離を誘起する圧力勾配がより上流で現れることが考えられる. 翼と地面との間の空間断面積を主流方向に垂直に見たとき,翼の 位置が低いほど流れ方向の変化の割合は大きくなる.そのため圧 力勾配は急な立ち上がりになり,層流剥離を誘起する圧力勾配は 上流側で現れる.これは図7とも一致する.

図 6,7 に各地上高における翼下面の Cp 分布の解析および実験 結果を示す.解析結果は時間平均値である.グラフより Cp 分布 の絶対値を解析は大きく見積もっていることがわかる.これは実 験と解析での翼端渦の有無の違いによる影響が考えられる.また 解析は地上高の変化に対する Cp 値変化の傾向をよく捉えている.

Fig. 5 Isosurface of the second invariant of velocity gradient tensors colored by streamwise velocity - bottom view.

Fig. 7 Mean pressure coefficient along airfoil (LES).

x/H0.2,0.4 での Cp 値のピークや, x/H0.5 前後において地上高と Cp 値の関係の逆転といった特徴が,その差を含めてよく再現され ている. これは翼端渦の影響の少ない翼の中央における乱流剥離 による空力特性を充分に解析で予測できると言える.

5. 結論

- (1) Large-Eddy Simulation を用いて地面効果の影響下での乱流剥 離を再現し、地上高の違いによる剥離位置変化の特徴を捉え た.
- (2) 翼中央における Cp 分布の特徴および Cp 分布と地上高の関係性を再現し、高レイノルズ数での乱流遷移を伴う空力特性の十分な予測可能性を示した.

参考文献

- (1) 流体技術部門委員会, 自動車の空力技術, (2017), pp. 18-19.
- (2) 佐藤,浅田,野々村,河合,青野,焼野,藤井 "レイノルズ 数1,600,000 における翼周りのLES: 乱流剥離とその制御" 第 27 回数値流体力学シンポジウム,A05-2 (2013).
- (3) Lilly, D. K., "A proposed modification of the Germano subgrid-scale closure method," Phys. Fluids, A4(3), (1992), pp. 633-635.
- (4) Hirt, C. W., Amsden, A. A., and Cook, J. L., "An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds," Journal of Computational Physics, vol. 14, (1974), pp. 227-253.