回転流体誘導加熱に対する撹拌効果

Mixing effects on induction heating in rotating fluid

 佐々木悠汰,阪大,大阪府豊中市待兼山町 1-3,yuta.sasaki@flow.me.es.osaka-u.ac.jp 渡村友昭,阪大,大阪府豊中市待兼山町 1-3,tomoaki.watamura@me.es.osaka-u.ac.jp 杉山和靖,阪大・理研,大阪府豊中市待兼山町 1-3,kazuyasu.sugiyama@me.es.osaka-u.ac.jp 古瀬充穂,産総研,茨城県つくば市梅園 1-1-1,m.furuse@aist.go.jp
 竹村文男,産総研,茨城県つくば市並木 1-2-1,takemura.f@aist.go.jp
 Yuta SASAKI, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, JPN
 Tomoaki WATAMURA, Osaka University·RIKEN, 1-3 Machikaneyama, Toyonaka, Osaka, JPN
 Kazuyasu SUGIYAMA, Osaka University·RIKEN, 1-3 Machikaneyama, Toyonaka, Osaka, JPN
 Mituho HURUSE, SANSOKEN, 1-1-1 Umezono, Tukuba, Ibaraki, JPN
 Humio TAKEMURA, SANSOKEN, 1-2-1 Namiki, Tukuba, Ibaraki, JPN

Induction heating of a rotating fluid in an externally applied direct-current magnetic field is numerically studied. We consider magnetohydrodynamics (MHD) in a two-dimensional circular domain, and the Joule heating due to the eddy current and the Lorentz force coupled with the fluid velocity and the magnetic flux density. The Maxwell and Navier-Stokes equations are solved by means of a Direct Numerical Simulation (DNS) for various Hartmann numbers *Ha*. In this research, to improve the heating effect for the fluid, rigid plates are inserted into a container. Effect of the length and position of the plates on the heat generation are investigated. The heat generation is demonstrated to be considerably enhanced due to the plate mixing effect.

1. 緒言

金属の加工において「加熱」というプロセスは多用されている. 誘導加熱と呼ばれる方法は、変則的な磁場中の被加熱物に流れる 渦電流の抵抗熱を用いた加熱方法であり、エネルギー損失が少な く高速加熱が可能であることから、新たな金属の加熱方法として 応用が期待されている⁽⁰⁾.現行の誘導加熱は、被加熱物の周囲に設 置したコイルに交流電流を流すことで変則的な磁場を発生させる 方法が用いられている.しかし、交流電流を用いて変則的な磁場 を生み出す過程において適切な冷却工程が必要となり、ジュール 損失により、全工程の効率は約50%が上限である⁽⁰⁾.近年超電導 コイルの発達により強力な直流磁場生成が可能となったため、直 流磁場内の被加熱物を回転させ、被加熱物内に渦電流を流すこと で、冷却工程を必要とせず、高効率に加熱する回転誘導加熱の応 用が期待されている.

Lubin ら^のや渡部⁴⁰によって一様磁場中で回転する円柱アルミを 対象とした回転誘導加熱の知見は得られている.しかしいずれの 場合も対象は剛体であり、金属が溶融した状態である流体を対象 とした回転誘導加熱に関する知見はない.我々の研究グループで は、直流磁場内で回転する円筒容器内の金属流体を対象とし、直 接数値計算による回転誘導加熱の解析を行い、流速や発熱の空間 分布に関する知見を得た⁶⁰.その結果、一定の強度以上の磁場を印 加した際には、容器中心では流体が静止しており、発熱領域が縁 近傍に限られることが分かった.また円筒容器内の流速が発熱を 促進させるとの予想から、円筒容器内部の流体に速度を発生させ るため振動回転を与えた系や剛体円柱を組み込んだ二重円筒容器 の系について同様の解析を行ったが、十分な発熱効果の増強は見 られなかった.

そこで本研究では、回転円筒容器に板を挿入し、内部流体を撹 拌させ充填させた金属流体を対象に磁気流体力学を基に直接数値 計算を行い、板の挿入による発熱効果の向上を図った.容器内に 挿入する板の長さおよび位置を変化させ発熱量を評価し、発熱効 果増強のメカニズムを流動構造の変化から説明する.

2. 解析領域·計算手法

2. 1 解析領域

図1 に本計算の解析領域と座標系を示す.本研究では、一様磁 場 B において角速度 Ω で回転する半径 R の円筒容器に金属流体 を充填させた領域を計算対象とし、基本座標系は二次元極座標系 である.本報で用いた計算では、円筒は固定したまま磁場を回転 させる回転座標系で計算を行っている.挿入する板の長さを円筒 の半径 R で無次元化した長さL*,枚数を N_p とする.なお、図で は L* =1, N_p =1.レイノルズ数を Re=10000,磁気レイノルズ 数を Rm=10 に固定した.磁場の強さを表す式(1)のハルトマン 数 Ha と L*, N_p を変化させ、総ジュール発熱量やトルクの大き さ、流速分布を解析し、板の挿入が発熱量に与える影響について 評価する.なお式(1)中において、 σ は導電率、 B_0 は磁束密度係 数、 ρ は密度、 ν は動粘度である.

(1)

Fig. 1 Schematic outline of simulation model.

2. 2 計算手法

媒質を非圧縮性流体として扱うため、支配方程式は、連続の式 と以下に示すローレンツ力を考慮した運動方程式および磁束ポテ ンシャルの移流と拡散の式である.

$$\frac{D\boldsymbol{u}}{Dt} = -\nabla p + \frac{1}{Re} \nabla^2 \boldsymbol{u} - \frac{Ha^2}{ReRm} (\nabla \psi) \nabla^2 \psi, \qquad (2)$$

Copyright © 2018 by JSFM

$$\frac{D\psi}{Dt} = \frac{1}{Rm} \nabla^2 \psi, \qquad (3)$$

ここで u は速度ベクトル, p は圧力, Re はレイノルズ数, ψ は磁 束ポテンシャル, Ha はハルトマン数, Rm は磁気レイノルズ数, 式 (2) の右辺第 3 項はローレンツ力であり,板の両面において速 度と圧力にはノイマン条件を課している.なお,速度 u や圧力 p, 磁束ポテンシャル ψ ,電流密度 j, ジュール発熱 Q は R, Q, ρ , B_0 でスケーリングし,無次元化している.流速は SMAC 法により 陰的に,磁束ポテンシャルは陰的に求解する.式 (3) から得られ る磁束ポテンシャルを式 (2) の右辺第 3 項に代入することでロー レンツ力を求める.そして、ローレンツ力を考慮しジュール発熱 を求め,運動量保存式に連成させることで流速や圧力を求める.

3. 計算結果

3. 1 発熱量に対する板の影響

図 2 (a) に板を挿入しない場合と長さ 1 の板を 1 枚挿入した場合 における Ha 数を変化させたときの円筒容器内の総ジュール発 熱量を示す. 図 2 (b), (c) は Ha = 100 において板の有無によるジ ュール発熱の空間分布を示す. ここで縦軸は総ジュール発熱量 Q, 横軸は Ha であり,直線は剛体回転の場合の総発熱量を表す. 図 2 (a) より, Ha の増加に伴って板を挿入していない場合に対する 発熱量の増加量が大きく,また剛体回転の場合の発熱量に近づく ことが分かる.これは内部流体は、本来板がない場合であれば Ha 数の増加に伴い静止しているが、板の挿入により内部流体に速度 が誘起され、それにより発熱を示すためである.また (b), (c) か らも板の挿入により内部流体が撹拌し、大きな発熱を示している ことが分かる.

3. 2 エネルギー収支に対する板の影響

図3(a),(b) に板を挿入しない場合と長さ1の板を1枚挿入した 場合におけるエネルギー収支を比較したもの示す. ここで本研究 では、次に示すエネルギー輸送の式(4)を満たすことを予め確認 している.

Fig. 3 Energy balance; (a) without and. (b) with plate

$$-\frac{d}{dt}\langle K\rangle - \langle \varepsilon \rangle - Q + T = 0.$$
(4)

ここで、K は運動エネルギー、E は粘性散逸、T はトルクであり、 ()は体積積分を表す.また図において赤色、緑色、青色、紫色の線 がそれぞれジュール発熱、運動エネルギー、粘性散逸、トルクを 表す.両図から板がない場合は一定時間経つと系は定常状態にな ることが分かる.一方、板を挿入した場合は、粘性散逸は他と比 べ小さい値を示し、それ以外のエネルギーが振動していることが 分かる.これは板を挿入することで、内部の流体が静止すること なく、非定常な流動へと変化したためである.

3.3 発熱量に対する板の長さと枚数の影響

図4に板の枚数 (N_p)を固定した場合,長さ (L^*)を固定した場合,板の総長 ($L^* \times N_p$)を固定し板の枚数と長さを変えた場合の 発熱量を比較したものを示す.ここで、それぞれの板は円筒外周 から半径方向に長さを持ち、周方向に等間隔に配置した.図より、 板の長さが長いほど、板の枚数が多いほど発熱量が大きくなるこ とが分かった.また板の総長を1に固定し、板の長さ L^* と枚数 N_p を変え、それぞれの総発熱量を比較した結果、Ha = 100において は、 $L^*=0.25$, $N_p=4$ の場合に最も大きな発熱を示すことが分かっ た.このことからそれぞれの板の総長において発熱量を最大にす る最適な分割パターンが存在することが示唆される.

Fig. 4 Comparison of the total joule heat value by length and number of boards (Ha = 100).

4. 結言

本研究では、板を挿入した回転円筒容器に充填させた金属流体 を対象に磁気流体的に直接数値計算を行い、発熱量に対する容器 内に挿入する板の長さおよび位置の影響を調査した. Ha の増加 に伴い、板による発熱量の増加は大きくなり、磁場に対して板の 向きが時間的に変化するため系は非定常となり時空間的に異なる 発熱を示すことが分かった. 板の長さと枚数により異なる発熱を 示し、Ha=100、板の総長が1の場合においては L*=0.25、Np=4 の時に最も大きな発熱が見られた. このことから板の総長により それぞれ発熱量を最大にする最適な板の分割パターンが存在する ことが考えられる.

謝辞 本研究で用いた計算結果の一部は、理化学研究所情報システ ム部の Hokusai Great Wave を用いて得た.

参考文献

- (1) Zinn, S. & Semiatin, S.L. ASM Int., (1988).
- (2) Lubin, T., Netter, D., Leveque, J. & Rezzoug, A., *IEEE Trans. Magnet.*, 45, (2009).
- (3) Mach, F., Karban, P. & Dolezel, I., J. Comput. Math., 236, (2012).
- (4) Watabe, T., Result of Research Activities., 153, (2015).
- (5) Nabeshima, S.,Sugiyama, K., Watamura, T., Furuse, M. & Takemura, F., *Proc. TFEC9*, USB (2017).