粗視化分子動力学法を用いた水・アルコール混合溶液中における

アイオノマー凝集現象の解析

Coarse-grained Molecular Dynamics Study of Ionomer Aggregations in Water/Alcohol Solutions

○ 馬渕拓哉,東北大,宮城県仙台市青葉区片平 2-1-1, E-mail: mabuchi@tohoku.ac.jp
徳増崇,東北大,宮城県仙台市青葉区片平 2-1-1, E-mail: tokumasu@ifs.tohoku.ac.jp
Takuya Mabuchi, Tohoku University, Sendai, Miyagi, Japan
Takashi Tokumasu, Tohoku University, Sendai, Miyagi, Japan

Structural properties of ionomer aggregations in a mixture of 1-propanol (NPA) and water have been investigated using coarse-grained molecular dynamics simulations. The dependence of NPA content on the ionomer structures was studied by systematically changing the NPA content in the system. The self-assembly behavior of ionomers into cylindrical bundle-like aggregates was observed. In water-rich solutions, the ionomer aggregate was found to be more stable at certain size, which is larger than that in NPA-rich solutions.

1. 緒言

近年、世界規模での高度経済成長に伴いエネルギー消費の増大 が見込まれている中で、環境負荷の少ない石油代替エネルギーの 1 つとして固体高分子形燃料電池 (Polymer Electrolyte Fuel Cell: PEFC)が注目されており、CO2排出削減ならびにエネルギー高効 率利用へ向け、多くの研究・開発が行われている. PEFC の構成 材料の中で、触媒層はPEFCの性能、耐久性、信頼性を決める重 要な部材であり、現在幅広く世界中で研究が進められている(1.2). 触媒層に用いられるアイオノマー(高分子電解質)には、プロト ンをキャリアーとするプロトン伝導性の高分子が必要とされるが、 多くの場合 Nafion®に代表されるフッ素系高分子電解質が用いら れている. 触媒層は触媒, アイオノマー, およびアルコール・水 混合溶媒を含んだ触媒インクを乾燥させることで形成されるため, 最終的に決定される触媒層構造と触媒インクの組成との関係性を 理解し、触媒層構造形成現象を解明することが PEFC 性能向上に 向けて非常に重要となる.しかしながら、触媒層構造は溶媒中に おける分子レベルでの触媒およびアイオノマー分散構造に大きく 起因するため、マクロスケールの理論を用いた従来型の手法では 解析が困難である. そこで本研究では、アルコール・水混合希釈 溶液中におけるアイオノマー分散構造について分子動力学 (Molecular dynamics: MD) 法により解析を行った.

2. 計算手法

アルコール・水の希釈溶液中におけるアイオノマー分散構造は 平衡状態に達するまでに数十から百ナノ秒オーダーの時間を要す る⁽³⁾ため,全原子 MD 法では計算コストが高く評価が困難である. そこで、本研究では溶媒分子およびアイオノマーに粗視化モデル を適用することで効率的に解析を行った.図1に等価重量(EW) が約1100の Nafion アイオノマーの粗視化モデルを示す.アイオ ノマーを構成する主鎖骨格および側鎖の一部には疎水性のビーズ を用い、側鎖のスルホ基部分には電荷を有した親水性のビーズを 用いた.アルコールモデルでは1-プロパノール(NPA)1分子を 1ビーズとした.水モデルでは4分子を1ビーズとし、水の誘電 率を再現するために分極効果を取りいれた粗視化水モデル⁽⁴⁾を適 用した.各ビーズ間の相互作用パラメータには MARTINI force fields⁽⁵⁾を用いた.

アイオノマーとして図1で示した単体量を計3本連ねたものを 用い,これを3次元周期境界条件の計算領域内にランダムに配置 させた.系に入れるアイオノマーの本数はNonomer=1本からNionomer =20本の間で変化させ、それぞれ独立した系として計算を行った. 溶媒分子は溶液中のアイオノマー質量比が5 wt%となるようにし、 水に対する NPA の質量比が $w_p = 20$ wt%, 50 wt%, 80 wt%と異なる 3 つの系に合わせて NPA および水のビーズ数を調整した. 計算は すべて圧力 P = 1 atm および温度 T = 300 K に制御した NPT アンサ ンブルで行い、合計で 150ns の間、10 ps 間隔で全ビーズの位置を 記録した. ここで、N は分子数、P は圧力、T は温度を示す. な お、温度制御には Nosé-Hoover 法⁶、圧力制御には Andersen 法⁷⁰ を用いた. LJ ポテンシャルおよびクーロンポテンシャルには shift function⁽⁸⁾を用い、カットオフ距離は $r_{cut} = 12$ Å とした.

Fig. 1 Chemical structure and coarse-grained model of Nafion monomer. The spheres correspond to coarse-grained beads that represent hydrophobic backbones (red) and sidechains (green), and hydrophilic charged sulfonate groups (yellow).

3. 結果と考察

アイオノマーの分散構造を解析するためには、まずクラスター を定義する必要がある.本研究では、主鎖のビーズ間の構造情報 を用いて、2つのビーズ間の距離がR = 0.7 nm以下であれば1つ のクラスターとみなすと定義した.なお、0.5 < R < 0.9 nmの範囲 では結果に大きな差異はないことを確認している.アイオノマー のクラスター構造の平衡状態を確認するために、各アイオノマー 鎖が凝集する過程を評価した.図2にNPA 濃度 $w_p = 80$ wt%にお ける Nonomer = 15 の時間経過に伴うクラスター変化の結果を示す. 図より、時間経過とともに徐々に凝集し、クラスター数が減少し ていく様子がわかる.また、1 つのクラスターに凝集するまでに 少なくとも 100 ns 程度の時間を要することが分かる.他のすべて

条件においても100 ns において1 つのクラスターになることを確 認した. 図3にwp=0.5におけるアイオノマーが異なる (Nionomer= 5 および Nionomer = 15) 2 種類の凝集後アイオノマークラスターを 示す. これより、いずれのアイオノマーもシリンダーに近い形状 (バンドル構造)を有しており、散乱実験^(9,10)などで観測されて いる形状と一致している. 他のすべての条件においてもアルコー ル濃度およびアイオノマー本数においても同様の形状が確認され た. さらに、各条件において熱力学積分法(11)を用いてアイオノマ -1本当たりの自由エネルギーを求めた結果を図4に示す.図よ り、NPA 濃度 wb = 20 wt%、50 wt%、80 wt% において Nionomer = 15、8、8 でそれぞれ最小値を示しており、特定のサイズにおいてアイオノ マー凝集体が最安定構造となることが明らかとなった.特に,NPA 濃度が小さいwp=20wt%において、より大きな凝集体で安定する ことから、水リッチな溶液中においては、アイオノマー凝集体の サイズが大きくなり、より凝集しやすい状態であることが示唆さ れた.

Fig. 2 Total number of ionomer clusters as a function of time for $N_{\text{ionomer}} = 15$ at $w_p = 80$ wt%.

(ii)

Fig.3 Snapshots of ionomer cluster (i) for $N_{\text{ionomer}} = 5$ and (ii) $N_{\text{ionomer}} = 15$ after 100 ns equilibration at $w_{\text{p}} = 0.5$. For clarity, solvent beads are not shown.

Fig.4 Radial distribution functions between the ionomer hydrophilic (the sulfonate group) beads.

4. 結言

本研究では、NPA・水混合溶液内におけるアイオノマー分散構 造について粗視化 MD 法を用いて解析し、アイオノマー構造の NPA 濃度依存性について評価を行った.本研究で用いた計算条件 の範囲では、アイオノマー本数やNPA 濃度に関わらず、アイオノ マーはシリンダー形状に近いバンドル構造を有することが示され、 散乱実験結果とも良い一致を示すことが明らかとなった.さらに 自由エネルギー計算より、水濃度が高くなるに伴い、アイオノマ ーはより多くの本数で凝集するほうが安定であることが明らかと った.これより、水濃度の高い溶液中においてアイオノマーはよ り凝集しやすい状態であることが示唆された.

謝辞

本研究はNEDO事業「固体高分子形燃料電池利用高度化技術開発事業/普及拡大化基盤技術開発/触媒・電解質・MEA内部現象の高度に連成した解析、セル評価」およびJSPS科研費JP17K14600の助成を受けたものです.ここに厚く謝意を表します.

参考文献

- Y. Wang, K. S. Chen, J. Mishler, S. C. Cho and X. C. Adroher, *Appl. Energy*, 88 (2011) 981-1007.
- (2) D. K. Paul, K. Karan, A. Docoslis, J. B. Giorgi and J. Pearce, *Macromolecules*, 46 (2013) 3461-3475.
- M. Ghelichi, K. Malek and M. H. Eikerling, *Macromolecules*, 49 (2016) 1479-1489.
- (4) S. O. Yesylevskyy, L. V. Schäfer, D. Sengupta and S. J. Marrink, *PLoS Comput Biol*, 6 (2010) e1000810.
- (5) S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman and A. H. de Vries, *J. Phys. Chem. B*, 111 (2007) 7812-7824.
- (6) W. G. Hoover, *Phys Rev A*, 34 (1986) 2499-2500.
- (7) H. C. Andersen, J. Chem. Phys., 72 (1980) 2384-2393.
- (8) S. J. Marrink, X. Periole, D. P. Tieleman and A. H. de Vries, *Phys. Chem. Chem. Phys.*, 12 (2010) 2254-2256.
- (9) S. Jiang, K.-Q. Xia and G. Xu, *Macromolecules*, 34 (2001) 7783-7788.
- (10) M. Yamaguchi, T. Matsunaga, K. Amemiya, A. Ohira, N. Hasegawa, K. Shinohara, M. Ando and T. Yoshida, *J. Phys. Chem. B*, 118 (2014) 14922-14928.
- (11) W. F. van Gunsteren and H. J. C. Berendsen, J. Comput. Aided Mol. Des., 1 (1987) 171-176.