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In computer simulations, a higher spatial or temporal resolution is usually associated with higher accuracy. While
it is well known that higher resolution comes at the cost of more numerical operations and therefore longer
computation times, it is often overlooked that this increase in numerical operations also incurs more rounding
errors. In this research, we simulate granular particles (modeled by a polygonal discrete element method - DEM) in

an incompressible Newtonian fluid (modeled by finite element method - FEM). The simulations with graded FEM-
meshes towards the particle free regions provide both better performance as well as higher accuracy compared to
a fine, constant mesh size.

1. Introduction

Granular materials in a fluid medium give rise to
many phenomena like sedimentation, settling or lique-
faction. While these phenomena can be observed in
nature and are easily reproduced in laboratory experi-
ments, the microscopic interactions between fluid and
granular particles are still not fully understood. By
modelling the granular particles via discrete element
method (DEM) and combining it with a finite element
method (FEM) for the fluid part, our MATLAB simu-
lation can deal with these interactions at a microscopic
level.
For the time being, we limit ourselves to two-

dimensional simulations. First of all, for 3D granular
systems with a symmetry (either rotational or trans-
lational), the simulation of 2D cross sections yielded
physically meaningful results in the past. Further-
more, for steadfast progress, an understanding of the
two-dimensional situation is a prerequisite for three-
dimensional simulations in the field of granular mate-
rials. We have witnessed how several groups, start-
ing right away with writing three-dimensional simula-
tion codes, either discontinued their efforts very soon
or completed only partially useful codes with limited
applicability.

2. The Need for a Graded Mesh

For many systems of particles in fluids, the bound-
aries are far away from the actual region of interest.
Accordingly, a sizeable part of the domain is filled with
fluid, like in the experiments by Rondon et al. on the
collapse of a granular step (1) (as sketched in Figure 1).
A numerical simulation of such geometries with con-
ventional uniform spatial discretization would require
a considerable part of the CPU time for the solution
of the fluid equations. So not the number of granular
particles in the region of interest becomes the limiting
factor, but the computational effort spent on the buffer
spaces towards the boundaries where nothing relevant
happens at all. As another negative side effect, redun-
dant equations for a fluid flow of vanishing magnitude
may become the dominant source for the numerical er-
ror of the simulation (see Figure 2). While the growth
of these errors can be influenced by the choice of the dis-
cretization elements, one should stay close to the ”sweet
spot” between high discretization- and rounding error to
achieve optimal performance and accuracy.
When one tries to recreate an actual experimental

setup as seen in Figure 1 for a simulation, the origi-
nal dimensions and boundary conditions should match,
even when the experiments have not been designed with
numerical recreation in mind. Scaling down the domain

Fig. 1: Sketch of the two-dimensional analogon of a
collapsing granular heap in fluid, similar to the exper-
iments conducted by Rondon et al. Particle size is ex-
aggerated.

would change the behaviour of the system or inhibit
particle movement, limiting the comparability.
Flow velocities and their gradients towards remote,

fixed boundaries will be negligibly small. Consequen-
tially, even if a coarser grid is used in these areas, the
effect on the simulation accuracy will be negligible as
well. This motivates the implementation of a graded
mesh that coarsens towards the boundaries, to improve
performance and allow the simulation of a larger num-
ber of particles in the actual region of interest.
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Fig. 2: Qualitative scaling of the error for a numer-
ical simulation. Computational effort scales with the
number of time steps and/or mesh elements
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Fig. 3: Three-dimensional particles with connected
pore space and fluid flow (blue lines)(a), secluded pore
space between two-dimensional particles (b) and con-
nected pore space between our two-dimensional DEM
particles with interaction via ”shadows” and fluid
boundaries given by the ”core” so fluid is allowed to
flow (c).

3. Discretization of the Fluid Domain
Our FEM code (2) is tuned for coupled use with

our DEM simulation. Consequently, it is based on ap-
proaches which may be unfamiliar to users of general
purpose CFD software. In the following sections we will
outline the characteristics of our approach.
The focus of our simulations is often the behaviour of

granular slopes in fluids. While spherical particles are
easy to model in DEM simulations, they cannot form
heaps: Any slope would disintegrate, as the bottom par-
ticles would simply roll away, driven by the weight of the
particles above. For spherical or other curved outlines,
there is additionally the problem of modelling the adja-
cent fluid boundary without computational overhead on
the one hand and with sufficient accuracy on the other
hand. Therefore, the particles in our DEM-Simulation
are modeled as convex irregular polygons, which also
allows the most flexible approach for a vast range of
physical materials.
Physically, in three dimensions, the (fluid filled) pore

space between the particles is interconnected, allowing
fluid to flow (see Figure 3a). But as the simulation is
two-dimensional, each pore space in the granular bulk
would be isolated (see Figure 3b). Therefore, the par-
ticle boundaries for the particle-particle interaction are
not simultaneously treated as as the boundaries of the
fluid. Instead, a smaller ”core” outline is constructed
inside each particle. The fluid only interacts with the
cores of the particles, while the DEM continues to use
the larger ”shadow”. In this way, we ensure the pore
spaces always remain connected and the flow is not
blocked (see Figure 3c). Outer wall boundaries have
identical outlines for FEM and DEM.
As particles move, the mesh points on their outline

change position. The flow in the shifted geometry can
be obtained via interpolation, which is readily available
from the space filling FEM discretization. In contrast,

Fig. 4: Types of triangular finite elements. The abbre-
viation for the polynomial order of the base functions
is given on the left and the location of the nodes inside
the element on the right.

for finite difference methods, not even oblique edges
could be implemented as boundaries in a mathemati-
cally exact way.
The pore space between the polygonal particles can

only be discretised exactly with unstructured triangular
grids. Any discretization with rectangles would lead
to zero order errors, so the resulting accuracy of the
simulation would also be of order zero. Furthermore,
the flexibility of an unstructured triangular grid makes
the integration into a graded mesh approach much easier
as well.
With the mesh structure set, the actual finite ele-

ment functions must be chosen. Gresho and Sani (3)
list a wide variety of triangular finite elements. Figure
4 shows the basic element functions depending on the
order of the polynomials used as base functions. To ob-
tain the force of the fluid on the particles, pressure nodes
on the particle surfaces (i.e. the fluid boundaries) are
necessary. Accordingly, this requires nodes on either the
edges or corners of the FEM-triangle, where the pres-
sure is defined. This excludes the use of P0 or P−1 ele-
ments, so the minimum order is P1 (first order / ”linear”
or better ”affine”). The Ladyzhenskaya-Babuska-Brezzi
(LBB) condition requires that the polynomials for the
velocities are one order higher than for the pressures
(due to the order in the governing equations of the flow)
to avoid stability problems. The minimal choice then is
the Taylor-Hood element (P2P1), combining P2 (second
order / quadratic) velocity base functions with first or-
der pressure base functions in the simplest of ways, con-
sequently allowing somewhat straightforward discretiza-
tion of the Navier-Stokes- and continuity equations and
implementation into the code.

4. Solver and Fluid-Particle-Interaction
As phenomena like liquefaction are transient pro-

cesses, our simulation needs to be time dependent. Time
integration is performed via the implicit backward dif-
ferentiation formula of second order (BDF2) for both
FEM- and DEM parts. BDF2 is A-stable, which al-
lows the choice of a large time step, as well as L-Stable,
so perturbations are not damped out numerically (4).
As an implicit solver, BDF2 is also not affected by the
von-Neumann stability criterion, so the time step is not
limited by mesh size (5).
BDF2 is implemented as a predictor-corrector

scheme, where at the beginning of a time step, an initial
solution (prediction) is calculated and later corrected.
The nonlinear equations for the corrector after Gresho
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are solved via Newton-Raphson iteration. The structure
of this equation corresponds to the index-1-formulation
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with the pressures Pn+1 as Lagrange parameters λ.
Accordingly, the predictor step is computed under the

assumption of constant pressures and forces. The veloc-
ities at the particle surfaces are taken directly from the
DEM solution as these appear to the FEM as boundary
conditions. On the circumference of the particles, the
fluid velocity is set to the velocity of the correspond-
ing material points due to linear and angular motion of
the particle. Then forces and pressures are computed
based on the values of the kinematic variables outputted
from the predictor. Based on the deviation of the forces
from the previous timestep, the correction is applied.
The advantage of the formulation in Equation 1 is that
pressures are computed as Lagrange parameters. This
allows for a non-smooth variation of the pressures be-
tween time steps, which would be devestating for a time
integrator.
The fluid forces FD excerted on the boundary Γ of

the DEM-Particles follow from the integration of the
fluid pressure and velocity gradient (friction) over the
particle surface (8)

FD =

∫
Γ

{
− pδij + ηf

(
(∇u) + (∇u)T

)}
n̂ dl (3)

with p as the pressure, δij as the Kronecker delta, ηf as
the dynamic Viscosity, ∇u as the velocity gradient, and
n̂ as the normal vector along the boundary Γ pointing
into the fluid domain. FD, together with DEM-internal
forces (e.g. gravity, contact forces), gives the total force
on a particle.
When the particles are moving, the mesh points on

the particle boundaries also move. In regular intervalls,
a mesh relaxation step and a new Delaunay triangula-
tion are performed to avoid the formation of bad mesh
elements. Each time the flow field on the new points
is interpolated from the function values at the points
of the previous time step. The computational cost for
remeshing is negligible compared to the fluid solver rou-
tines.
5. Implementing the Graded Mesh

A graded mesh needs to coarsen towards regions and
boundaries with negligible flow velocities in such a way
that the discretization error even for large cells remains
negligible. In the simplest case of a circular particle in-
side a rectangular domain, the particle would first be
discretized as a regular polygon with the usual (fine)
mesh resolution. Then, concentric circles are fitted
around this polygon with increasing radii according to

ri+1 = ri +∆l
ri
r0

(4)

Fig. 5: Graded mesh around a circular particle. The
particle fills the innermost circle so the triangles towards
the center are deleted in the computational grid.

with ri being the current radius, r0 the radius of the
circular particle, and ∆l the mesh size on the particle
surface. Each mesh node on the particle surface (regu-
lar polygon) is then projected outwards onto the other
circles and shifted by 1/2 · (ri+1 − ri) for every second
circle to create a staggered structure. Finally, the con-
strained Delaunay algorithm from MATLAB is used to
connect the nodes into triangles and to generate the
mesh seen in Figure 5. This method allows the triangu-
lar mesh cells to keep nearly equilateral shape, ensuring
good mesh quality.
For use with rectangular domains, the circular mesh

is truncated at the boundaries. Nodes close to the
boundaries are projected onto the domain outline, and
any degenerate triangle with an aspect ratio outside
0.5 > ϵ > 2 is removed by fusing them with neigh-
bouring elements (see Figure 6).
Afterwards, an algorithm is applied to relax the trian-

gles into a more equilateral shape. All edges are treated
as springs (loaded towards equilateral shape) which de-
form towards a configuration with smaller tension for
each spring in each triangle (for details see (9)). Im-
balances in the aspect ratio can be reduced further by
a subsequent Delaunay triangulation which reconfigures
edges towards nearer grid points.
The method can be used in a similar way for agglom-

erates of multiple particles. Here a circular outline is
fitted around the particle bulk and the graded mesh is
constructed on the outside of this circle. On the inside,
the fine (body-fitted) mesh is used. Instead of a full cir-
cle, circular sectors can be used if they allow a better fit
to the geometry. Based on Equation 4, the automatic
increase in scale σ for triangles in each circle is

σ = r0
1 + ∆l

1
(5)

resulting in values of σ ≈ 1.4 for single particles and up
to σ = 1.2 for particle groups.
6. Behaviour of a Single Particle

To verify our graded mesh approach, we compared the
sinking of a single particle in a rectangular fluid domain
both with a fine mesh and a graded mesh.
The geometry features a 3 × 11mm fluid domain

bounded by 0.5mm wide immobile DEM-walls on each
side. A circular DEM-particle of 1mm diameter in the
center of the fluid domain moves under the influence of
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Fig. 6: Elimination of degenerate elements at the do-
main boundaries. Mesh before (left) and after (right)
merging of elements.

gravity and fluid forces. The particle has a density of
ρp = 2650 kg/m3 (soil) and the fluid is treated as water
(ρf = 1000 kg/m3, ηf = 1 ·10−3 Pa·s) with the dynamic
viscosity η. The flow field and particle are initialized
with velocities set to zero.
Equidistant (fine) meshing results in 8914 nodes. The

graded mesh reduces the number of nodes by ≈ 88%
to only 1034 nodes, without any change of the point
resolution at the particle surface (see Figure 7). A
timespan of 1 · 10−3 s (1ms) real time is simulated on
a standard PC (Mac Mini 2012, Core i7 2.3GHz, 4GB
DDR3 1600MHz) and computation times and particle
behaviour are written out for evaluation.
The performance increase due to the graded mesh is

immediately apparent as the computational time is re-
duced by ≈ 82% as shown in Table 1.

Mesh Type Computation Time
fine (old) mesh 7.4378 · 103 s
graded (new) mesh 1.3170 · 103 s

Tab. 1: Computation time for a single particle in a
rectangular fluid domain with different mesh types.

A look at the velocity of the sinking particle in y-
direction (vertical) shows no relevant deviation between
mesh types (see Figure 8), proving that use of the
graded mesh does not affect simulation accuracy in any
negative way. The sinking velocity increases due to
gravity until it nears a maximum value, when gravi-
tational force and fluid forces approach equilibrium.

Fig. 7: Simulation geometry with fine (left) and graded
mesh (right).

The velocity in x-direction (horizontal) however
shows a clear deviation between mesh types (see Figure
9). As the geometry is perfectly symmetric along the
vertical, initial velocities for the flow field and particle
are zero, and there are no forces applied in x-direction,
the particle movement should not have any horizontal
component at all. Examining the order of magnitude for
the horizontal velocity component (Figure 9) shows that
it is negligibly small (10−6 m/s) compared to the vertical
one (Figure 9, 10−3 m/s). That the error is finite indi-
cates numerical rounding errors mentioned in Section 2..
However, the deviation from pure vertical movement for
the graded mesh is reduced to about ≈ 1/5, compared
to the fine one. This shows that the graded mesh ap-
proach brings the simulation closer to the ”sweet spot”
for minimal numerical error shown in Figure 2 while
reducing the computational effort.
Deviations in the horizontal velocities are also re-

flected in the particle trajectory (see Figure 10). The
y-movement (sinking) is basically independent of the
mesh, while the drift in x-direction for the equidistant
(fine) mesh is about 10 times greater than for the graded
one.
A look at the vertical acceleration in Figure 11 shows

very similar particle behaviour for both mesh types
where the acceleration is quickly reduced due do fluid
forces. However, the graph for the graded mesh shows a
slight wiggle around the mean acceleration curve. This
wiggle is due to slight discretization errors that are not
dampened out due to L-stability of the solver. But as
BDF2 is an implicit solver, the inaccuracies are not ex-
aggerated and are averaged out to form smooth velocity
and position curves.
Finally the acceleration in horizontal direction (which

should be zero) shows the same wiggle as well (see Fig-
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Fig. 8: Vertical velocity of the sinking particle for the
equidistant (blue) and graded (red) mesh.
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Fig. 9: Horizontal velocity of the sinking particle for
the equidistant (blue) and graded (red) mesh.

ure 12). As the density of the sinking particle is rather
close to that of the surrounding fluid, the relative error
in the horizontal acceleration oscillates around numer-
ically zero and is rather large for both meshes. For
the physically measurable velocity in Figure 9, one sees
that these fluctuations are averaged out. As no gravita-
tional acceleration acts in the x-direction, the wiggle is
now visible even for the fine mesh, although not as pro-
nounced. However the variation for the graded mesh
stays nearly centerd around 0m/s2, while the mean
value for the fine mesh drifts off to negative values due
to rounding errors as stated above.
7. Multi Particle Configuration

The graded mesh was developed with many-particle
applications in mind. In particular for sedimentation,
there are ususally spacious free flow regions. For the ge-
ometry of the experiment by Rondon et al.(1), we have
joined a body-fixed fine mesh surrounding n× n parti-
cles with a sectorial cutout of the previous graded mesh
constructed via concentric circles (see Figure 13). Set-
tings for materials are unchanged from the simulation
in Section 6. and the simulation is run for 0.16 s. Figure
14 shows how the particles have sunken to the bottom of
the fluid domain and are reordering themselves to form
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Fig. 10: Trajectory of the sinking particle for the
equidistant (blue) and graded (red) mesh.
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Fig. 11: Vertical acceleration of the sinking particle due
to gravity for the equidistant (blue) and graded (red)
mesh.

0 0.2 0.4 0.6 0.8 1

x 10
3

0.01

0.005

0

0.005

0.01

t[s]

a
x
[m

/s
2
]

Equidistant Mesh

Graded Mesh

-

Fig. 12: Horizontal acceleration of the sinking particle
for the equidistant (blue) and graded (red) mesh.

5 Copyright c⃝ 2018 by JSFM



The 32th Computational Fluid Dynamics Symposium
E10-2

a slope.

Fig. 13: Initial multi particle geometry. The body fit-
ted mesh around the particles fills a circular sector and
transitions into the graded mesh along the blue line.
Variations in element size are a result of the mesh re-
laxation.

Fig. 14: Multi particle geometry after 0.16 s. Most
particles have completed sedimentation.

8. Conclusion and Outlook
In Section 6. we have shown for a single particle that

using graded mesh can significantly reduce computa-
tion times without negatively impacting accuracy. Fur-
thermore, due to the resulting smaller number of nodes
we reduce rounding errors and - although slightly in-
creasing discretization errors - are able to minimize the
overall numerical error, allowing for more physically ac-
curate results.
We have also shown in Section 7., that the graded

mesh can be applied to multi-particle geometries as well
and simulations containing an even larger number of
particles are currently built to better recreate physical
experiments.
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