最密充填格子上の格子ボルツマンモデル A Lattice Boltzmann Model on Close-pack Lattice

○ 宮内敦, RIST, 650-0047 神戸市中央区港島南町 1-5-2, E-mail: miyauchi@rist.or.jp: Atsushi Miyauchi, RIST, 1-5-2 Minatojima-minami, Kobe, Japan

Lattice-gas cellular automata or lattice Boltzmann models sometimes suffer incorrectness or insufficient accuracy which influenced by the arrangement of underlaying nodal-points or cells. In this article, I proposed to use a kind of hexagonal close-pack lattice for those methods instead of regular and widely used Cartesian lattice. At first, a novel coordinate system for the lattice to make identification of nodal points easy to be used from popular languages such as C/C++ is introduced. Then sets of lattice velocities are described to discuss isotropy of lattice tensors of second and fourth ranks. Finally, weights to construct equilibrium distribution in lattice BGK method are shown.

1. はじめに

純粋に離散的な流体解析の手法として格子気体オートマトン法 (LGCA) や格子ボルツマン法 (LBM) が知られている⁽¹⁾. ナヴィ エ・ストークス方程式よりもミクロなレベルでの流体の振る舞い を模擬していることや、計算アルゴリズムが簡素なために並列計 算に向いていることなどから、昨今利用の機会が増えてきた超並 列計算機への適用という点でも関心が高い.一方で両者とも比較 的低マッハ数の流れに限定されるなど制約や欠点もいくつか存在 する. 例えば LGCA の欠点の一つとして、2次元では容易に満た される運動量移流テンソルの等方性が3次元では実現困難なこと が挙げられる.現在ではFCHCと呼ばれる巧妙な方法で4次元速 度を3次元に射影することで形式的には解決されているが、衝突 項の処理に巨大な参照表が必要なこともあり、実際の応用例は極 めて少数に限られている⁽²⁾. LBM は状態占有数を実数値化するこ とでLGCAのノイズを軽減すると同時に等方性の問題も解決した. それに加えて衝突項の取り扱いも単一緩和時間の導入により著し く簡単化された.しかし格子への制約は大きく緩和されたものの、 実用上は数値誤差や安定性の観点からもより等方的な格子が望ま しいことに依然として変わりないと考えられる.

本発表では最密充填格子の一つである面心立方格子における LBMの試みを報告する.まず面心立方格子を効率よくデータ配列 に割付ける座標系を提案し、次にD3Q19-FCCとD3Q43-FCCの格 子速度とそれによって定義される4階格子テンソルの等方性を議 論する.そして最後にこの格子速度に基づく平衡速度分布の構成 方法について述べる.

Fig. 1 Stereographic view of FCC lattice.

2. 最密充填格子

空間内に最も高い密度で球を詰め込んだ配置として最密充填格 子が知られている. これは2次元の三角格子を鉛直方向に積み重 ねてゆくことで実現される。さらにそれには2層を繰り返す六方 最密充填格子と、3層を繰り返す面心立方格子(Fig.1)の2種類 が可能である. これらはどちらも同じ充填密度をもつが、空間を ボロノイ分割すると、最密充填格子はその表面が6つの菱形と6 つの台形から構成されるのに対し、面心立方格子は12の菱形で 構成されており、等方性に関しては面心立方格子の方が優れてい ることが解る. さてここで面心立方格子に基底ベクトル系を設定 しよう。通常は単位胞の稜線方向にとるが、面心立方格子の単位 胞は圧し潰された細長の図形であるために3次元の立体をデータ 配列に格納しようとすると大きな余白が必要となりメモリ効率が 悪い. さらに格子点の参照はリストベクトルを介した間接アクセ スとなるためにキャッシュミスを頻発することになる。そこで 我々はこの問題を解決するために y と z の 2 方向にジグザグの座 標軸を持つ屈折デカルト座標を提案した⁽³⁾. その場合に x-y 座標の 配置は Fig. 2 のようになる. 見易くするために図では一層分だけ 示しz軸も省略してある。z軸は三角柱にらせん状に巻きついた配 置となる.

Fig. 2 Two dimensional configuration in a slice.

面心立方格子では任意の球に接触する球は全て等距離で12個 存在する. 屈折デカルト座標では任意の位置 (i,j,k) 周りの隣接球 の位置は以下の式で表される.

(i + 1, j, k), $(i - \alpha + 1, j + 1, k),$ $(i - \alpha, j + 1, k),$ (i - 1, j, k), $(i - \alpha + 1, j - 1, k),$ $(i - \alpha, j - 1, k),$

Copyright © 2018 by JSFM1

 $(i + \eta + \beta\xi, j + \xi, k + 1), \quad (i + \eta + \beta\zeta, j - \zeta, k - 1),$ $(i + \eta + \beta\xi - 1, j + \xi, k + 1), \quad (i + \eta + \beta\zeta - 1, j - \zeta, k - 1),$ $(i - \alpha\zeta + \beta\eta, j + \xi - 1, k + 1), (i - \alpha\xi + \beta\eta, j - \zeta + 1, k - 1)$

ここで図中に導入されている補助変数は floor 関数と modulo を 用いて以下のように定義されている.

$$\xi = \left\lfloor \frac{(k\%3)}{2} \right\rfloor, \quad \eta = \left\lfloor \frac{((k+1)\%3)}{2} \right\rfloor, \quad \zeta = \left\lfloor \frac{((k+2)\%3)}{2} \right\rfloor$$
$$\alpha = j\%2, \qquad \beta = (j+1)\%2$$

屈折デカルト座標の実用上の注意点として、並列化のために領 域分割する場合に接続面の対応付けを容易にするためy方向を2 格子、z方向を3格子間隔で分割する必要があることが挙げられ る.また、x及びy座標軸方向は断面が平面的にならないために 形状適合性の点でデカルト座標に見劣りし、壁境界の適用に工夫 にも必要となる。

3. 格子速度と格子テンソル

中心となる球周りの第2隣接球までを表示すると Fig. 3 のよう になる.この図に示したように、最隣接球は全て等距離であり上 下3層に分布するが、第2隣接球は3種類の距離に分類され上下 5層にわたって分布する.格子速度としてこれらの中から適当な 球を取捨選択することによって LGCA や LBM を構成することが できる.選択した格子速度からは格子テンソルが定義されるが、 奇数階テンソルの成分は対称性から恒等的に0となる.LGCA に おいて運動量移流テンソルは2階と4階の格子テンソルの差にな るので、物理的に正しい計算を行うにはこれらの等方性が重要で ある.2階テンソルが等方的であるためには2つの添字に関して クロネッカーのデルタとなればよいが、これは幾何学的に対称な 格子速度では大抵満たされる.一方で4階テンソルの等方性を格 子速度の見かけの対称性のみから正しく推測することは困難で、 実際に計算してみなければ判断できない.

計算してみると、面心立方格子の4階格子テンソルで非零の成分は添字が xxxx, yyyy, zzzz, xxyy, yyzz, zzxx の6つのみとなる. さらにそのうち xxxx と yyyy、yyzz と zzxx は同じ値になるので、 独立なものは4つである. 球間距離を d とすると、これらの非零 成分の値は D3Q19-FCC の場合は次のようになる.

> $C^{xxxx} = C^{yyyy} = 13d^4/2,$ $C^{zzzz} = 16d^4/3,$ $C^{yyzz} = C^{zzxx} = 10d^4/6,$ $C^{xxyy} = 13d^4/6,$

D3Q43-FCC の場合も以下に示す.

$$C^{xxxx} = C^{yyyy} = 103d^4/2$$
, $C^{zzzz} = 160d^4/3$,
 $C^{yyzz} = C^{zzxx} = 46d^4/3$, $C^{xxyy} = 103d^4/6$,

等方性は添字 xxxx, yyyy, zzz が等しく、また xxyy, yzz, zzx も 等しく、かつ前者が後者の3倍である時に成立することが既に知 られている.ここに示したように、立方体格子と同様に面心立方 格子でも4階テンソルは厳密に等方的にはならない.しかし面心 立方格子ではxとyに関係する成分のみ着目すると部分的に等 方性を満たしていることが判る.さらに成分間の比の最小値と最 大値を計算するとD3Q19-FCCは1.6から3.0の間。D3Q43-Fccで は3.0から3.5の間となり、立方格子のD3Q19(2.5)やD3Q27(1.5) よりいくぶん等方的になっている.

4. 格子ボルツマンモデル

面心立方格子上での非熱流体の格子ボルツマンモデルを最も標 準的な方法で構成する.まず衝突項に BGK 近似を適用すると、格 子速度 c_i の速度分布 F_i は次式で時間を 1 ステップ前進される.

$$F_i(x+c_i\Delta t,t+\Delta t)=F_i(x,t)-\frac{1}{\tau}\big(F_i-F_i^{eq}\big)$$

ここで平衡速度分布 F^{eq} を格子速度によって表現しておく必要 がある.そのためには偶数次の格子テンソルの重み付き和が同じ 次数のマックスウェル分布のモーメントに等しくなるように重み 係数を決定する.具体的な計算手順は文献^のにゆずり、ここでは D3Q19-FCC の結果だけを以下に記す.

$$W_0/\rho_0 = \frac{10}{27}, \qquad W_1/\rho_0 = \frac{4}{81}, \qquad W_2/\rho_0 = \frac{1}{162},$$

 $\frac{k_B T}{m} = \frac{2d^2}{9},$

格子ボルツマンモデルの場合には格子テンソルの加重和をとる ので等方性は必須ではないが、数値的観点からは高い等方性は誤 差の相殺に有利に働くと考えられる。最後に今後の展開として、 熱流体へ適用を検討している。6次のモーメントまで合わせるの で、さらに速度の多い D3Q43-FCC が必要となるが等方性は良く なるので既存法と数値的な差が表れるかも知れない.

5. まとめ

最密充填格子の一つである面心立方格子をLGCA とLBM に適 用した。4階格子テンソルは完全に等方的とはならないが、立方 格子からは一定の改善が見られた.また BGK 近似を用いた非熱流 体の格子ボルツマンモデルを導出した。

参考文献

- (1) 蔦原, 高田, 片岡, 格子気体法・格子ボルツマン法, コロナ社, (1999)
- (2) Wolf-Gladrow, D. A., Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer Verlag, Berlin, (2000)
- (3) Miyauchi, A., Iwamoto, K., Arjunan, S. N. V., and Takahashi, K., "pSpatiocyte: A Parallel Stochastic Method for Particle Reaction-Diffusion Systems," arXiv:1605.03726, (2016)