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In discrete element (DEM) simulations of hard particles with soft contacts, for elongated particles the noise in the
angular motion can introduce force changes which act on the rectilinear degrees of freedom for elastic interactions
alone. At least for round particles with tangential forces (friction), this problem exists also. Independent damping

forces at the particle contacts can neither damp away the motion due to these force fluctuations nor can they
damp out the noise in the angular degrees of freedom. The resulting vibration leads to a slow creep downwards for
the center of mass of granular aggregates. We discuss the similarities and differences for the damping of rectilinear
and angular degrees of freedom and approaches for a rotational damping to decrease such creep.

1. Introduction

The common approach for discrete-element simula-
tions (DEM) uses “hard-particles, soft-contacts”. That
means that the forces are computed from the geomet-
rical overlap of the undeformed shapes, while the equa-
tions of motion are integrated out under the assumption
of rigid particle shapes, see sectionA. However, as there
are no point contacts, but extended overlap areas, a par-
ticles’ rotation changes the magnitude and direction of
the interparticle forces(1).
For a system where rectilinear motion alone is al-

lowed, in mechanical equilibrium the residual noise
can be compensated by a velocity dependent damping
(Fig. 1, blue line). However, for a system with angular
degrees of freedom and extended (instead of point-like)
contacts, residual angular motion leads to inconsisten-
cies in the force direction: Within a timestep τ , the
orientation of the contacts can change by an angular
increment ∆φ (Fig. 2) due to noise-like error in the ori-
entation. Even if the overlap area may remain the same,
the direction fluctuation leads to inconsistencies in the
computation of the force equilibrium. As consequence,
the velocity dependent damping for the rectilinear de-
grees of freedom can no longer compensate the residual
motion and the noise in the angular degrees of freedom
spreads towards the rectilinear degrees of freedom.
Simulations of particle configurations which should

be static reveal persistent, small, noisy vibration am-
plitudes around the equilibrium positions(2). This vi-
bration affects on the granular assembly like an external
excitation, so for a granular heap or a granular assembly
in a box, the height of the center of mass decays dur-
ing the whole simulation time, instead of the expected
decay of the kinetic (vibration) energy to zero. The im-
perfect force balance around the equilibrium of position
and orientation induces a fluctuating numerical error on
the scale of the timestep and the particle overlap. While
it decays with the timestep (Fig. 3) nobody will be in-
clined to reduce the timestep and computational cost
only to deal with that noise.
For elongated particles, the effect occurs already for

elastic forces alone, for round particles only when tan-
gential forces (friction) are present. Changing the fric-
tion laws does not remove the noise. “Numerically ex-
act” friction,see (3) for a detailed description, based on
the static friction constraints or even approaches like
the Cundall-Strack friction model show noise induced
by particle rotation. Figure 4 shows persistent oscilla-
tions in the kinetic energy of a granular heap also in
simulations with the Cundall-Strack friction model, and
irregular noise in the kinetic energy with a constraint-
based friction model.
For configurations where the contacts should be

static, it is therefore desirable to have an angular damp-

ing in addition to the damping in the rectilinear degrees
of freedom.
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Fig. 1: Physically realistic decay of the average kinetic
energy for a DEM-system with (unphysically) frozen out
degree of freedom (blue line) and unphysical stagnation
of the kinetic energy for the same system with (physical)
intact rotation. Spikes indicate sudden reordering of the
configuration under vibration. Computations with the
numerically exact multibody friction from(3).

Fig. 2: In mechanical equilibrium, the forces and
torques in a DEM-simulation should be balanced.
Residual angular motion can induce small changes in
the contact orientation ∆φ. As consequence, the con-
tact forces change, equilibrium is no longer maintained
and the rectilinear degrees of motion experience noise.

2. Rotational damping
For the angular motion, there is no “actio = reactio”

principle as there is for rectilinear motion. Introducing
a damping torque where force components are micro-
scopically not exactly balanced. Therefore, such a law
will not violate any mechanical theorems.
For every contact j of a particle i we can compute

an individual “damping torque”, based on the relative
tangential velocity at the point of contact vT,rel as

T damp
j = ∓γt

√
IiY |r× vT,rel|, (1)
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Fig. 3: Decay of the center of mass for the granular
heap(3) in Fig. 8 in Sauter diameter with a timestep
of τ = 10−5 (black). Using half the timestep (gray)
decreases the creep.

7 7.1 7.2 7.3 7.4 7.5

10
−8

10
−6

t [s]

E
k
in

[J
]

Fig. 4: Periodic oscillations in the kinetic energy for
the simulation of the granular heap in Fig. 8 using the
Cundall-Strack model (grey). Shown in black is the
kinetic energy for the same heap using a non-stabilized
constraint-based friction model(3).

with the sign depending on the direction of the contact
vector r with respect to contact orientation. γt is a rota-
tional damping coefficient, Ii the moment of inertia and
Y the Youngs’ modulus. For both contacting particles
a, b we can then take the mean,

T damp
j = mean(|T damp

aj |, |T damp
bj |), (2)

oriented in the original direction

T damp
aj = sgn(T damp

aj )T damp
j , (3)

T damp
bj = sgn(T damp

bj )T damp
j , (4)

as the damping torque resulting from this contact. As
the damping torques are reactive forces, it is not possi-
ble to simply sum up the contributions of every contact
for each particle and hope that the resulting torques still
compensate the noise in the angular motion. With mul-
tiple contacts, positive and negative damping torques
are possible and the torques may compensate each
other, i.e. the damping would be too small. Further-
more, it is not possible to decide the damping torque at
each contact individually, as the rotation of the particle
is influenced by the sum of all damping torques from all
contacts.
For every single contact of a particle we can cumulate

the individual damping torques, weighted by the elastic

normal force Fn,elast
j of the corresponding contact,

T damp,sum
i =

∑
j

T damp
j |F elast

N,j |, (5)

With this value we can obtain the total damping torque
per particle as

T damp,tot
i =

niT
damp,sum
i∑
j |F elast

N,j |
, (6)

where ni is the number of contacts the particle has. This
damping torque has to compensate the elastic torque
T elast and the particles own rotation ωi, while the ro-
tation of a surrounding particle matrix ω0 (Fig. 5) im-
poses an upper limit on the damping torque, i.e. it has
to compensate the term

T̃i = T elast
i + Ii

ωi − ω0
i

τ
. (7)

Fig. 5: The rotation of a surrounding granular matrix
imposes an upper limit ω0 on the damping torque of
each individual particle. In mechanical equilibrium, the
particle itself follows the rotation of the surrounding
matrix and ω = ω0.

In mechanical equilibrium, the rotation of a particle
will be so that the tangential velocities at all contacts
average to zero. We obtain the elastic torque from the
elastic forces at each individual contact,

T elast = rxF
elast
y − ryF

elast
x , (8)

with an elastic force

Felast = F elast
N · n+ F fric

T · t. (9)

The total elastic torque can then be obtained by simple
summation of the individual damping torques from all
contacts.
Determination of the rotation from the surrounding

particle matrix, i.e. ω0 works analogous to the damping
torque, as the sum of weighted partner angular veloci-
ties,

ω0
i =

∑
j ωj |F elast

N,j |∑
j |F elast

N,j |
, (10)

where

ωj =
rj × vT,rel,j

|rj |2
(11)

is the relative rotation of the contact.
As the magnitude of the damping torque can not be

greater than the magnitude of the elastic torque, we
introduce a cutoff

(T̃i + T damp,tot
i ) · T̃i < 0 : T damp,tot

i = −T̃i. (12)
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Fig. 6: Ten hexagonal particles with radius 5cm stacked
with upper particles in the gaps between lower particles.

The final torque acting upon the particle is then given
by

T = T phys
i + T damp,tot

i , (13)

where T phys is the torque resulting from the full inter-
action forces.
3. Numerical applications

In the following we apply our algorithm to some
sample problems and compare the results with the un-
damped versions. Through all simulations we use the
parameters in table 1 with a timestep of τ = 10−5, ex-
cept when explicitly stated otherwise.

Young’s modulus 107[N/m]
Normal damping coefficient γ 0.5
Rotation damping coefficient γT 0.1
Coefficient of friction µ 0.6
(particle-particle, particle-wall)
Density of particles σ 5000[kg/m2]

Tab. 1: Parameters for the interaction computation of
two-dimensional polygonal particles.

3.1 Cannonball-stacking
For a wedged stack of 10 identical hexagonal particles,

as shown in Fig. 6, the situation is rather simple: While
the friction between the particles is keeping the stack
stable, residual energy stored in the rotational degrees
of freedom in form of long-wave oscillations, is continu-
ously transferred into the rectilinear degrees of freedom
and only slowly dissipated by the linear damping mech-
anisms. If we include our rotational damping, we find
an offset in the creep to higher values (Fig. 7), i.e. the
onset of creep is delayed compared with the undamped
version. As the configuration is fairly stable, most of
the remaining energy had already been dissipated be-
fore, and the net benefit is small.
3.2 Granular heaps

For a granular heap of polygonal particles with shape
and size dispersion, like in Fig. 8, the situation is more
complicated. The variation in size and shape means,
that more energy modes remain in the rotational degrees
of freedom that need to be accounted for.
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Fig. 7: Center of mass height of the stack in Fig. 6 in
its static phase. The case without rotational damping
is shown in black, with additional rotational damping
in blue.

1dm

Fig. 8: Granular heap of 1622 particles in a static con-
figuration.

If we compare the relative drift of the centre of mass
(Fig. 9), scaled in Sauter mean diameter,

dSauter = 2
√
A/π, (14)

we find, that the drift starts to decrease slightly af-
ter some time for the version with additional rotation
damping. If we vary the damping parameter γT from
equation (5), we find an optimum between γT = 0.05
and γT = 0.5, see Fig. 10. Too large values for γT lead
to overcompensation of the damping torque and sub-
sequent increase of the residual angular velocity, while
for too small values, the effect of the damping torque
becomes simply too small to make a difference. If the
timestep is reduced, then the numerical noise and error
in ∆φ decrease as well, and the position drift becomes
smaller (Fig. 11).
4. Conclusion

In section 1., we have shown how residual angular
motion can lead to errors in the contact orientation and
induce persistent noise in the rectilinear degrees of free-
dom that velocity dependent linear damping forces can-
not compensate. To reduce this noise we have presented
a novel damping formalism for the angular degrees of
freedom in section 2.. While it follows the general struc-
ture of damping in the normal contact forces(1), unlike
normal damping, angular damping can not be treated
independently for each contact of a particle, but has to
consider cumulative values instead. Finally, in section 3.
we have applied the damping formalism to two sample
cases and discussed its difference with the undamped
case.
A The Discrete Element Method

The dynamics of rigid particles largely depend on
their shape: For round particles friction is subdued,
they can ”escape“ via rolling. On the other hand, an-
gular particles are more likely to slide, making static
friction effective. For the DEM in general, relative ve-
locities and accelerations are required instead of abso-
lute values. For elongated particles, forces are no longer
central, the contacts can be arbitrarily oriented and the
resulting torques must be included in the calculations.
We choose the overlap polygon, as shown in Fig. 12,

as a measure of physical deformation of actual particles.
We can find the overlap area A from the intersection
points S1 and S2, and as a force point P the centroid of
the overlap area. The connecting line between S1 and
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Fig. 9: Drift in the centre of mass for the heap in
Fig. 8 in Sauter diameter. Shown in black is the version
without rotation damping, shown in blue the version
with our rotation damping.
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Fig. 10: Change of the vertical center of mass drift for
the heap in Fig. 8 with rotational damping in depen-
dence of the damping parameter γT . Shown in a solid
black line is γT = 0.05, in a solid blue line is γT = 0.1,
and in a dashed black line is γT = 0.5.

7.75 7.8 7.85 7.9 7.95 8
−0.03

−0.02

−0.01

0

t [s]

C
O

M
: 

(y
−

y
0

)/
d

s
a

u
te

r

Fig. 11: Change of the vertical center of mass drift
for the heap in Fig. 8 in dependence of the timestep τ .
Shown in a solid black line is τ = 10−5, and in a solid
blue line is half the timestep, τ = 5 · 10−6.

S2 defines the tangential direction t, which also fixes
the normal direction n. The reduced mass m is given
by the masses ma,mb via

1

m
=

1

ma
+

1

mb
. (15)

The elastic force

F el =
Y A

l
(16)

(with the Youngs modulus Y in units of [N/m]) acts in
normal direction, proportional to the overlap area. The
characteristic length

l =
4|ra||rb|
|ra|+ |rb|

(17)

allows to define the elastic force in units of [N]. The
normal dissipative force is chosen proportional to the

Fig. 12: Contact geometry for two polygons (light grey)
and their overlap polygon (dark grey), showing the cen-
ters of mass Ca, Cb, the center of mass for the overlap
polygon P , and the contact vectors ra, rb from the cen-
ters of mass to the center of the overlap (left). The
inset (right) shows (exaggerated) the normal (n) and
the tangential (t) direction.

change of A/l as

Fdiss = γ
√
mY

Ȧ

l
, (18)

with a damping constant γ. Solid friction is imple-
mented in tangential direction. Lastly, the torques are
computed as

T = r× F, (19)

with the sum of all normal and tangential forces F.
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