数値シミュレーションを用いた羽田空港の格納庫後流中を

飛行する着陸機の安全性の研究

Numerical Investigation of Hangar Wake Effect on an Aircraft for Safe Landing

○ 岩渕 秀, 東北大, 仙台市青葉区片平 2-1-1, shu.iwabuchi.p7@dc.tohoku.ac.jp

焼野 藍子, 東北大, 仙台市青葉区片平 2-1-1, aiko.yakeno@tohoku.ac.jp

吉村 僚一, 東北大, 仙台市青葉区片平 2-1-1, ryouichi.yoshimura.s2@dc.tohoku.ac.jp

大林 茂, 東北大, 仙台市青葉区片平 2-1-1, s.obayashi@tohoku.ac.jp

菊地 亮太, DoerReserch, 千葉市中央区中央 2-5-1, kikuchi-ryota@doerresearch.com

Low-level turbulence around airport has been known to cause a serious problem to aircraft operations during take-off and landing. In order to consider the safe airport operations, we conducted a numerical investigation of low-level turbulence and estimation of a landing aircraft safety at Tokyo/Haneda airport in Japan. Hangar wake is found to become severe when wind directions are N to ENE. An aircraft approaching to runway 34L encounters maximum 0.13g normal load of hangar wake at 80 m to 120 m in altitude.

1. 序論

近年,世界の航空需要は著しく拡大しており,航空機の安全か つ効率的な運用を維持するのは重要な課題である.特に,"着陸復 行"や"ハードランディング"を引き起こす空港周辺で発生する 低層風擾乱は,航空機の安全かつ効率的な運用を阻害する現象で あり,対策が必要である.

世界有数の混雑度を誇る Fig.1 に示す羽田空港は、A 滑走路南端 (RWY34L)の北東部に位置する格納庫群の影響で Hangar Wake と 呼ばれる低層風擾乱が発生する. Hangar Wake は北風から東風時に A 滑走路南端付近で発達し、RWY34L にアプローチする着陸機の 運航に悪影響を与える事がわかっている.また、国土交通省は着 陸時の RWY34L 使用比率を更に高める運用を計画している⁽¹⁾. 今 後の安全かつ効率的な運用の為に、Hangar Wake の詳細を調査する 必要があると考える.

羽田空港の Hangar Wake が発生した場合,着陸続行か着陸復行 かなどの危険度判断は,操縦桿を握る"パイロットの感覚"に委 ねられている.つまり, Hangar Wake 中を飛行する際の危険度に定 量的評価がなされていないのである.そこで本研究は,CFDで模 擬した Hangar Wake 中を飛行する航空機の揺れを数値化し, Hangar Wake の危険度を定量的に評価する.

2. 手法

2. 1. Hangar Wake のシミュレーション

Implicit Large Eddy Simulation(ILES)により,羽田空港の格納庫周 りの流体計算を実施した.格子生成手法は Building Cube Method(BCM)を用いた⁽²⁾.基礎方程式は3次元非圧縮性ナビエ・ス トークス方程式を用いる.対流項には3次精度河村・桑原スキー ム,粘性項には2次精度中心差分を,時間積分に4次精度ルンゲ クッタ法を用いた⁽³⁾.

計算領域は,格納庫を中心に 25.6 km × 25.6 km × 0.8 km (*x* × *y* × *z*). セル数は 2,265,000,着陸経路領域の格子幅は 50 m, 最小格子幅は 1.25 m である.

境界条件は、 $\pm x$ 、 $\pm y$ 方向にディリクレ境界条件、+z方向にノイマン条件、-z方向にノンスリップ条件とした.

初期場として一様流 $U^{\dagger} = (u \cos \theta, u \sin \theta, 0) \delta - x, -y$ 面か ら流して計算した. uを調整することで風速を, θ を調整すること で風向を設定することができる.本計算では, u = 15 m/sに対 し,風向をN,NNE,NE,ENE,Eの5パターンの計算を実施し

Copyright © 2019 by JSFM1

た.

2. 2. 危険度評価

ILES により,羽田空港の格納庫周りの流体計算を実施した. 航 空機の揺れを評価するにあたり RMS normal load を採用した⁽⁴⁾. RMS normal load は Bowles らによって提唱された近似式であり, 鉛直風の RMS 値 σ_w を用いて以下の様に書き表される.

$$\sigma_{\Delta n} = \sigma_w(x, y) f(z) (\ln l) \frac{V}{V n(z)} \cdots (1)$$

f(z)は機種に従う実機のフライトデータを近似した関数である. Vは真対気速度、Vn(z)は真対気速度の高度補正関数でzの2次多 項式である. lは乱流スケールで 100 m とした. また,鉛直風の RMS 値は

$$\sigma_{w}(x,y) = \left[\frac{1}{L_{x}L_{y}}\int_{x-0.5L_{x}}^{x+0.5L_{x}}\int_{y-0.5L_{y}}^{y+0.5L_{y}} \{w(x',y') - \overline{w}(x',y')\}^{2} dx' dy'\right]^{0.5} \cdots (2)$$

である. $L_x = L_y$ は航空機が5秒間に進む水平距離である.

RMS normal load を重力加速度で単位化した指標を使うと乱気流 のハザードレベルを評価することができる⁽⁶⁾. 具体的には $\sigma_{\Delta n}$ を重 力加速度で単位化した指標を使うと、0.1 $g \le \sigma_{\Delta n} \le 0.3$ gを乱 気流レベル 1、0.3 $g \le \sigma_{\Delta n} \le 0.6$ gを乱気流レベル 2、 $\sigma_{\Delta n} > 0.6$ gを乱気流レベル3 と評価できる. これは、実際の事故 調査報告を基に作成された指標である.本研究では、この指標を 用いて Hangar Wake の危険度を定量的に評価する.また ILES を利 用した乱気流評価は、実機のデータと ILES による結果を比較・検 証した先行研究でもよい結果を得ている⁽⁶⁾.

着陸経路は現行制度の降下角3度の着陸経路を基に,滑走路端から南方2000mの直線を想定した.また,比較として,タッチダウンポイントを北方と南方に500mずらした場合の計算も実施した.従来通りの着陸経路をA,タッチダウンポイントを北方500mにずらした着陸経路をB,南方に500mずらした着陸経路をCとする.

第 33 回数値流体力学シンポジウム B03-4

3. 結果と考察

3. 1. Hangar Wake のシミュレーション

ILES による Hangar Wake のシミュレーション可視化の一部を Fig.2, Fig.3 に示す. Fig.2, Fig.3 は風向15 m/s,風向 NNE のシミ ュレーション結果を,鉛直風+5 m/sを赤で,鉛直風-5 m/sを 青で表したコンター図である. 黄緑色は格納庫である. Fig.3 はパ イロット視点から眺めた Hangar Wake の様子であり,進行方向正 面に Hangar Wake が拡がっている様子が分かる.

Fig.4 は、着陸経路上における鉛直風の RMS 値を風向で比較し たグラフ、Fig.5 は鉛直風の RMS 値を着陸経路断面で可視化した もので、西南西から眺めた図である.また RMS 値は、200 秒間の 鉛直風を計算したものである.Fig.5 の実線は降下角 3 度の着陸経 路 A である.暖色ほど鉛直風 RMS 値が大きいことを示す.Fig.4、 Fig.5 を見ると、格納庫の高さ(約 40 m)より高い高度に Hangar Wake が発生していることが読み取れる.また、Hangar Wake は滑 走路端から南方 500 m 付近と 1700 m 付近の二か所で発達してい る.ただし、Hangar Wake は東風時には発達していない.

3. 2. 危険度評価

Fig.6 は着陸経路 A における $\sigma_{\Delta n}$ を重力加速度で単位化した指標 を風向で比較したものである. 滑走路端から南方 600 m, 高度 60 m 付近と 1700 m, 高度 110 m 付近の二か所で航空機の揺れが卓越 する傾向があることが分かった.また, 滑走路端から南方 600 m, 高度 60 m 付近は低空かつ乱気流レベル 1 相当の揺れが発生する 危険な状況ということが読み取れる.

Fig.7 は風向 NNE における着陸経路 A, B, C の $\sigma_{\Delta n}$ 比較結果である. タッチダウンポイントを 500 m ずらすだけでは Hangar Wake を回避できないことがわかる.

Fig.4, Fig.5, Fig.6 を見ると, 滑走路端から 1500 m 付近の方が Hangar Wake が発達しているにもかかわらず, 航空機の揺れは滑走 路端から 500 m 付近でピーク値を迎えており, 矛盾しているよう にも思える. これは,式(1)のVn(z)が 60 m 上昇するだけで,おお よそ 10 倍変わるためである.

4. 結論

今回の計算の場合,風向 NNE, NE, ENE の場合に航空機に対 して大きく影響を及ぼすことが分かった.また,Hangar Wake 中を 飛行する際,航空機は乱気流レベル1相当の揺れに遭遇する.こ れは乗員乗客または機体に何らかの危害を加える重大インシデン トが発生しうる状況であり,着陸は困難であると推測できる.

この結果を実際に反映すると、風速 15 m/s 相当、風向 NNE から ENE の場合、管制側が RWY34L の使用中止の指示を出すことで Hangar Wake を回避できる.事前の指示で交通整理し、空の混乱を 最小限に抑えることは安全かつ安定な運航に有効であると考える.

Hangar Wake 発生時はタッチダウンポイントを変更することも 対策になると考えたが、500 m 程度の変更では大きな差が見られ なかった. なぜならば、タッチダウンポイントが 500 m 変わって も、各経路の高度差が20m 程度しかないためである. Hangar Wake は100 m スケールの乱気流であるので、1000 m スケールのタッチ ダウンポイント変更が望ましい. タッチダウンポイント変更は、 制動距離を考えると安全対策には有効ではないと考える. 経路の 変更はもう少し調査が必要である.

ただし本研究は、気象モデル等を取り入れていない単純化され た計算である.現実に即していない現象までも再現してしまって いる可能性については、留意する必要がある.

Fig. 1 Haneda airport.

Fig. 2 Vertical wind velocity contour.

Fig. 4 RMS of vertical wind velocity at the flight path A

Fig. 5 RMS contour of vertical wind at the flight path cross section .

Fig. 6 Relationship between $\sigma_{\Delta n}$ and wind direction.

Fig. 7 Comparison of $\sigma_{\Delta n}$ at the flight path A, B and C.

参考文献

- (1) 国土交通省 航空局, 羽田空港のこれから (2018), v.4.1.
- (2) Nakahashi, K and L.S. Kim., "Building-Cube Method for Large-Scale High Resolution Flow Computations," 42nd AIAA., (2004).
- (3) Kawamura, T. and Kuwahara, K., "Computation of high Reynolds number flow around a circular cylinder with surface roughness," 22nd AIAA., (1984).
- (4) Bowles, R.L, Hamilton, D.W and Comman, L., "FY02 TPAWS Radar NASA B757 Flight Campaign Summary," NASA,20-21 November, (2002).
- (5) Hamilton, D.W. and Proctor, Fred H., "An Aircraft Encounter with Turbulence in the Vicinity of a Thunderstorm," 21st AIAA., (2003).