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In this study, a calibration procedure for RANS turbulence model modification is proposed and applied to flow 

around a high-rise building as a case study. Wind tunnel measurements for the velocity and turbulent kinetic 

energy over 853 measurement points around the building were utilized to define validation metrics, which 

then used as the objective function in the optimization solver which was developed for calibration. Results of 

the calibrated RANS model were compared with experimental measurement data as well as LES results. 

Different flow parameters were compared in order to investigate the limitation and physical meaning of the 

calibrate CFD model.  

 

 

1. Introduction 

Computational fluid dynamics (CFD) is utilized in many different 

urban-related studies to obtain a high-resolution distribution of flow 

parameters. Many successful applications of CFD were reported for 

applications of the pedestrian-level wind comfort [1], the pollution 

dispersion [2], the building energy consumption [3], the wind energy 

[4], and the urban heat island [5].  

In the field of urban environment study, two different approaches 

are widely used in CFD, i.e., the Reynolds Averaged Navier-Stokes 

equations (RANS) model and large eddy simulations (LES). LES 

resolves the Navier-Stokes equations in time and space over the 

sub-grid scale and provides higher accurate results in comparison 

to RANS, but it requires noticeable computational resources. 

Furthermore, there are a many challenging issues for grid sensitivity 

and transient boundary condition implementation for LES, which 

make it infeasible for urban airflow simulations [6].  

RANS models are widely used in many engineering applications 

thanks to their lower computational cost and implementation 

complexity. Despite the popularity of RANS, their accuracy in 

prediction of flow parameters in weak wind regions behind buildings 

and street canyons in dense urban areas is low. They generally 

underestimate momentum diffusion in these regions which is 

accompanied by underestimation of turbulent kinetic energy (TKE) 

[7]. One reason of such inaccuracy is due to the RANS turbulence 

models parameters which are historically developed for 

fundamental flows in fluid dynamics, including simple shear flow, 

homogeneous isotropic decaying flow, and fully developed channel 

flow [8]. Nevertheless, these flows have few similarity with the 

airflow in the atmospheric boundary layer (ABL) around buildings in 

urban areas [9].  

Hence, in this study a procedure for improving the accuracy of 

RANS for airflow CFD simulations is presented which is based on 

the closure coefficients calibration using wind tunnel measurements. 

The method was applied to a case study of flow around a high-rise 

building model. Details of the flow quantities were compared with 

experimental measurements as well as LES results.  

 

2. Calibration method of RANS closure coefficients 

In Figure 1, the procedure for RANS parameter calibration is 

shown. Input parameters for RANS calibration are the closure 

coefficients of RANS turbulence models, which should be 

determined in the first step. In the next step, a sensitivity study will 

be carried out using Monte Carlo sampling technique. By coupling 

the Monte Carlo sampling technique and RANS CFD simulations, 

closure coefficients will be randomly varied in accordance with their 

given probability distribution functions (PDFs). The RANS CFD 

simulations will be repeatedly run to characterize the statistical 

parameters of the validation metrics, including their mean and 

standard deviation values. By integrating the Monte Carlo sampling 

into an optimizer, not only can the best mean value of validation 

metrics is calculated, but it is also possible to minimize the standard 

deviation of the validation metrics so as to reduce the effects of 

uncertainty of the closure coefficients on the validation metrics. 

Nonlinear Programing with Non-Monotone and Distributed Line 

Search (NLPQLP) optimization method [10], is used for the 

optimization purpose.  

  

 

Figure 1 Procedure for RANS parameter calibration. 

The stochastic optimization is defined to find a set of closure 

coefficients (𝑋) that: 

Minimize:         𝑓(𝜇𝑦(𝑋), 𝜎𝑦(𝑋))  

Subject to:           𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈        (1) 

where 𝑋𝐿 and 𝑋𝑈  are the lower and upper limits for closure 

coefficients 𝑋. A weighted sum approach was used to define the 

objective function, which includes a term for mean value variation 

relative to the target and a term to minimize the standard deviation 

of validation metrics [11]: 

𝐹 = ∑ [
𝑤1𝑖

𝑠1𝑖

(𝜇𝑦𝑖
− 𝑀𝑖)

2
+

𝑤2𝑖

𝑠2𝑖

𝜎𝑦𝑖

2 ]𝑙
𝑖=1                      (2) 

where 𝑤1𝑖
 and 𝑤2𝑖

 are the weighting factors, and 𝑠1𝑖
 and 𝑠2𝑖
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are the scale factors related to each term.  𝑀𝑖 stands for the target 

of validation metric 𝑖 and 𝑙 is the total number of validation metrics. 

The statistical variability of validation metrics (i.e. 𝜇𝑦𝑖
 and 𝜎𝑦𝑖

 ), 

which are required by the stochastic optimization formulation, can 

be estimated using Monte Carlo simulation (MCS) technique. More 

details about the stochastic optimization can be found in [12]. 

 

3. CFD modeling 

3.1. RANS turbulence model description 

The two RANS turbulence models are considered in this study, 

i.e., the standard 𝑘 − 𝜀 model (Std k- 𝜀) [13] and the standard 𝑘 −

𝜀 model with LK modification (LK 𝑘 − 𝜀) [14] model. The Reynolds 

stress is calculated based on the gradient diffusion hypothesis: 

−𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗𝜌𝑘 (3) 

where 𝑈𝑖  and 𝑢𝑖 are respectively component of the mean and 

instantaneous velocity in streamwise, lateral, and vertical directions, 

𝜌 is air density, and 𝜇𝑡 is the eddy viscosity (turbulent viscosity), 

which can be defined as below: 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
 (4) 

Values of the turbulent kinetic energy (𝑘) and its dissipation rate 

(𝜀) come directly from their differential transport equations: 

𝜕𝜌𝑈𝑗𝑘

𝜕𝑥𝑗
=

𝜕

𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝑥𝑗
] + 𝑃𝑘 − 𝜌𝜀 (5) 

𝜕𝜌𝑈𝑗𝜀

𝜕𝑥𝑗
=

𝜕

𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝑥𝑗
] +

𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜌𝜀) (6) 

where 𝜇  is molecular viscosity and 𝑃𝑘  is the production of 

turbulence due to shear. In the std 𝑘 − 𝜀 model, 𝑃𝑘 is defined as:  

𝑃𝑘 = 𝜇𝑡𝑆2 (7) 

where S = √2𝑆𝑖𝑗𝑆𝑖𝑗 is the magnitude of strain rate. In the LK 𝑘 −

𝜀 model, 𝑃𝑘 is defined as follows: 

𝑃𝑘 = 𝜇𝑡𝑆Ω (8) 

where Ω = √2Ω𝑖𝑗Ω𝑖𝑗  is the magnitude of vorticity rate. The 

vorticity tensor Ω𝑖𝑗 is calculated as below:  

Ω𝑖𝑗 =
1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
)    (9) 

  Values of the closure coefficients for the Std and LK 𝑘 − 𝜀 

models, according to [15], are predefined as the default values for 

most of the popular CFD tools such as ANSYS CFX, ANSYS 

FLUENT, STAR-CCM+, and OPenFoam, as below: 

𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1, 𝜎𝜀 = 1.3  

 

(10) 

3.2. Numerical setup 

Air flow around a high-rise building model with 1:1:2 shape was 

predicted by steady RANS and LES models. ANSYS FLUENT was 

utilized for all CFD calculations. For RANS, the SIMPLE algorithm 

utilized for the pressure-velocity coupling while the 2nd order upwind 

scheme was used for advection term discretization. For LES, the 

PISO solver was used for the pressure-velocity coupling and the 

bounded central differencing approach was used for the 

momentum equation spatial discretization. The transient 

formulation was based on the second order implicit scheme. The 

standard Smagorinsky model was used with the Smagorinsky 

constant 0.12. The statistics were calculated for 34 seconds in real 

time which corresponds to 1655 non-dimensional time unit.  

The computational domain is shown in Figure 2, which is a 

rectangular domain discretized using hexahedral structured cell 

elements with a cell number of about 928,136. The same 

computational domain and grid are used for both RANS and LES. 

The details of grid discretization are reported in [16].  

 

Figure 2 Computational domain for high-rise building.  

For the Inlet boundary condition for LES, the vortex method with 

1000 vortices, which is implemented in Fluent, was used to 

generate instantaneous fluctuated velocities at the inlet boundary. 

The vertical profiles of the streamwise velocity (
𝑈

𝑈𝐻
)  and TKE 

(
𝑘

𝑈𝐻
2 ) are shown in Figure 3. The obtained inflow profiles by LES 

was used for RANS in order to minimize the effect of the inflow 

boundary condition on the prediction results for comparison.   

 

Figure 3 Vertical profiles of the mean streamwise velocity and TKE 

used as inlet boundary condition. 

4. Wind tunnel measurements 

Experimental data for (
𝑈

𝑈𝐻
)  and (

𝑘

𝑈𝐻
2 )  was obtained from 

extensive wind tunnel measurements conducted in the open-circuit 

wind tunnel at Tokyo Polytechnic University, Japan [16]. The three 

𝑥 

𝑦 

z 



The 33rd Computational Fluid Dynamics Symposium 
Paper No. 138 

Copyright © 2019 by JSFM 3 

components of velocity were measured by the sprit fiber probe and 

CTA module [17]. The experimentally obtained mean-velocity 

components and TKE over 853 points, which are located over a 

vertical plane at 
𝑦

𝐻
= 0 and two horizontal planes at 

𝑧

𝐻
= 0.0625 

and 
𝑧

𝐻
= 0.5, as shown in Figure 4, were used for the calibration.  

 

Figure 4 Measurement location in the wind tunnel experiment 

used for RANS calibration. 

5. Results and discussion 

5.1. Calibration results 

In Table 1, the values of the default and calibrated coefficients are 

listed. The different values are obtained for the calibrated Std 𝑘 − 𝜀 

and LK 𝑘 − 𝜀 models, but the direction of calibrated values is the 

same. For instance, the calibrated values for 𝐶𝜇 are 0.077 and 

0.056 for the calibrated Std and LK 𝑘 − 𝜀 models, which are lower 

than the default values of 0.09.    

Table 1 Values of closure coefficients for default and calibrated 

models 

 𝐶𝜇 𝐶𝜀1 𝐶𝜀2 𝜎𝑘 𝜎𝜀 

Std 𝑘 − 𝜀 / LK 𝑘 − 𝜀 0.09 1.44 1.92 1.0 1.3 

Calibrated Std 𝑘 − 𝜀  0.077 1.47 2.65 0.76 0.51 

Calibrated LK 𝑘 − 𝜀  0.056 1.44 3.11 0.64 0.42 

  

5.2. Distribution of the mean velocity and TKE 

 In Figure 5, the streamlines and the distribution of 
𝑈

𝑈𝐻
 is shown 

over a vertical plane at 
𝑦

𝐻
= 0 . The LES results show very good 

agreement in comparison with the experiment where the size of the 

wake region behind the building is predicted accurately. 

Distributions of 
𝑈

𝑈𝐻
  obtained by the Std and LK 𝑘 − 𝜀  models 

show clearly the well-known tendency of steady RANS models in 

under-prediction of momentum diffusion behind the building [7]. In 

contrast, the calibrated Std and LK 𝑘 − 𝜀 models show significant 

improvement in this region, where the wake length behind the 

building is noticeably shorter than the one predicted by the Std and 

LK 𝑘 − 𝜀 models. 

The distributions of 
𝑈

𝑈𝐻
 over a horizontal plane near the ground 

at 
𝑧

𝐻
=

1

16
 is shown in Figure 6. For the Std and LK 𝑘 − 𝜀 models 

with the default closure coefficients, a very long recirculating flow is 

predicted which is resulted due to the momentum diffusion 

underprediction in this area. The calibrated models, in contrast, 

show very close agreement with LES and experiment results where 

the shorter recirculating flow is predicted in comparison with the 

default models.       

 
Figure 5 Distribution of the streamwise velocity over the vertical 

plane at 
𝑦

𝐻
= 0. 

   

 

Figure 6 Distribution of the streamwise velocity over the horizontal 

plane at 
𝑧

𝐻
=

1

16
.  

In Figure 7, the profiles of 
𝑈

𝑈𝐻
  are plotted for the different 

turbulence models and compared with experimental results. Over 

the vertical plane at 
𝑦

𝐻
= 0 and horizontal plane at 

𝑧

𝐻
= 0.5, very 

close agreements between all CFD models and experimental 

results are obtained in front of the building and over the roof and 

sidewalls (
𝑥

𝐻
= −0.75  and 

𝑥

𝐻
= −0.25 ). The velocity prediction 

inside the wake region clearly reveals the over-prediction of the 

reverse flow by the Std and LK 𝑘 − 𝜀  models, while noticeable 

prediction improvement by the calibrated models is clearly observed 

at 
𝑥

𝐻
= 0.75 and 

𝑥

𝐻
= 1.25. 

Experiment LES 

Std 𝑘 − 𝜀 LK 𝑘 − 𝜀 

Calibrated Std 𝑘 − 𝜀 Calibrated LK 𝑘 − 𝜀 

𝑥 
𝑦 

z 

Experiment LES 

Std 𝑘 − 𝜀 LK 𝑘 − 𝜀 

Calibrated Std 𝑘 − 𝜀 Calibrated LK 𝑘 − 𝜀 
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Figure 7 Profiles of the streamwise velocity over (a) horizontal 

plane at 
𝑧

𝐻
= 0.5 and (b) vertical plan at 

𝑦

𝐻
= 0. 

The distribution of 
𝑘

𝑈𝐻
2   at 

𝑦

𝐻
= 0  is depicted in Figure 8. The 

results of LES and experiment show high level of the TKE above 

the building roof and in the wake behind the building. The Std 𝑘 −

𝜀 model predicted the large value of TKE near the stagnation point 

in front of the building. It is due to the over-estimation of the 

production term in this model caused by the diagonal elements of 

the strain tensor which are very high around stagnation region [18]. 

Modification of the production term implemented in the LK 𝑘 − 𝜀 

model, reduces the TKE around the stagnation point. Nevertheless, 

both models noticeably underestimate TKE in the wake region. As 

can be seen in the figure, the calibrated models predict TKE more 

accurately in the wake region. Nonetheless, TKE is overpredicted 

above the roof by two calibrated models. 

The TKE distribution over the horizontal plane at 
𝑧

𝐻
=

1

16
 , is 

shown in Figure 9. While the Std 𝑘 − 𝜀  predicts larger value of 

TKE in front of the building, the LK 𝑘 − 𝜀  model shows better 

accuracy when compared with LES and experiment. However, at 

the downwind of the sidewalls, the high TKE region is observed in 

the experiment and LES, but the both models with default closure 

coefficients failed to reproduce it accurately. By utilizing the 

calibrated coefficients, TKE prediction accuracy is improved not only 

near the sidewall but also in the reverse flow region behind the 

building, as shown in the figure.  

 

 

Figure 8 Distribution of the TKE over the vertical plane at 
𝑦

𝐻
= 0. 

 

Figure 9 Distribution of TKE over the horizontal plane at 
𝑧

𝐻
=

1

16
. 

The profiles of 
𝑘

𝑈𝐻
2  over the same vetical and horizontal planes 

are shown in Figure 10. In front of the builidng at 
𝑥

𝐻
= −0.75, all 

CFD models calculate TKE accuratley with slighlty over-prediction 

between 0.5 ≤
𝑧

𝐻
≤ 1 by the Std 𝑘 − 𝜀 and calibrated Std 𝑘 − 𝜀 

models. Around the sidewall at 
𝑥

𝐻
= −0.25 and behind the building, 

the performance of calibrated models shows definite superiority in 

comparison to the models with the default coefficients. However, 

over the roof area (
𝑥

𝐻
= −0.25)  around 1 ≤

𝑧

𝐻
≤ 1.2 , the 

calibrated models show slight over-prediction in comparison to the 

Experiment LES 

Std 𝑘 − 𝜀 LK 𝑘 − 𝜀 

Calibrated Std 𝑘 − 𝜀 Calibrated LK 𝑘 − 𝜀 

𝑦
/𝐻

 

Experiment LES 

Std 𝑘 − 𝜀 LK 𝑘 − 𝜀 

Calibrated Std 𝑘 − 𝜀 Calibrated LK 𝑘 − 𝜀 
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experimental data. 

 

 

Figure 10 Profiles of the TKE over (a) horizontal plane at 
𝑧

𝐻
= 0.5 

and (b) vertical plan at 
𝑦

𝐻
= 0. 

5.3. Validation metrics for the mean velocity components and TKE 

A quantitative comparison by using the validation metrics is 

performed for three mean velocity components and TKE over 853 

measurement points, as shown in Table 2. The comparison of the 

validation metrics obtained by the default and calibrated models 

shows the accuracy improvement of the calibrated models. For 

instance, 𝐹𝐴𝐶2𝑈  and 𝐹𝐴𝐶2𝑘  for the default Std 𝑘 − 𝜀  model 

are 0.76 and 0.68, respectively, while they are 0.88 and 0.83 for the 

calibrated Std 𝑘 − 𝜀  model. These values are 𝐹𝐴𝐶2𝑈 = 0.93 

and 𝐹𝐴𝐶2k = 0.97 for LES. 

Table 2 Validation metrics for 
𝑈

𝑈𝐻
 and 

𝑘

𝑈𝐻
2  

 LES Std 𝑘 − 𝜀 LK 𝑘 − 𝜀 
Modified Std 

𝑘 − 𝜀 

Modified LK 

𝑘 − 𝜀 

𝐹𝐴𝐶2𝑈 0.93 0.76 0.73 0.88 0.87 

𝐹𝐴𝐶2𝑉 0.94 0.82 0.81 0.85 0.84 

𝐹𝐴𝐶2𝑊 0.8 0.76 0.76 0.76 0.76 

𝐹𝐴𝐶2𝑘 0.97 0.68 0.65 0.83 0.85 

𝑞𝑈 0.86 0.61 0.59 0.71 0.71 

𝑞𝑉 0.92 0.73 0.73 0.79 0.79 

𝑞𝑤 0.78 0.74 0.73 0.75 0.74 

𝑞𝑘 0.84 0.18 0.09 0.38 0.39 

𝐹𝐵𝑘 0.12 0.34 0.55 0.19 0.26 

𝑁𝑀𝑆𝐸𝑘 0.05 0.53 0.57 0.24 0.2 

The very close results, in terms of validation metrics for the mean 

velocity components, are obtained by the calibrated Std 𝑘 − 𝜀 and 

calibrated LK 𝑘 − 𝜀  models. 𝐹𝐴𝐶2𝑈 , 𝐹𝐴𝐶2𝑉 , and 𝐹𝐴𝐶2𝑊  are 

respectively 0.88, 0.85, and 0.76 for the calibrated Std 𝑘 − 𝜀 

model while they are respectively 0.87, 0.84, and 0.76 for the 

calibrated LK 𝑘 − 𝜀 model. 

As shown in Figure 8 and Figure 9, the TKE prediction by the 

calibrated LK 𝑘 − 𝜀  model is noticeably more accurate than the 

calibrated Std 𝑘 − 𝜀 near the stagnation point. Nevertheless, very 

close values are obtained by the calibrated models for 𝐹𝐴𝐶2𝑘 and 

q𝑘, which are respectively 0.83 and 0.38 for the calibrated Std 𝑘 −

𝜀 model and 0.85 and 0.39 for the calibrated LK 𝑘 − 𝜀 model.  

Variations of 𝐹𝐵𝑘  and 𝑁𝑀𝑆𝐸𝑘  are more different for the 

calibrated models. While for the Std 𝑘 − 𝜀 and LK 𝑘 − 𝜀 models 

𝐹𝐵𝑘 and 𝑁𝑀𝑆𝐸𝑘 are respectively 0.34, 0.55 and 0.55, 0.57, they 

decrease to 0.19, 0.24 and 0.26, 0.20 for the calibrated Std 𝑘 − 𝜀 

and calibrated LK 𝑘 − 𝜀  models, respectively. For LES 𝐹𝐵𝑘 =

0.12 and 𝑁𝑀𝑆𝐸𝑘 = 0.05.       

 

6. Conclusion 

A methodology for calibration of RANS model’s parameters was 

introduced. The method was applied to the Std and LK 𝑘 − 𝜀 

models for predicting flow parameters around a high-rise building. 

The results were compared with wind tunnel measurement data 

and LES results. Model improvement achieved by the calibrated 

models were discussed for the mean-velocity components and TKE 

distributions around the building.  
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