反応性流体解析における音速抑制法の適用 Reduced speed of sound technique for reacting flow

○ 林伸治, 三菱自動車, 岡崎市橋目町字中新切 1, shinji1.hayashi@mitsubishi-motors.com
 久保雅彦, 三菱自動車, 岡崎市橋目町字中新切 1, masahiko.kubo@mitsubishi-motors.com
 □田征人, 三菱自動車, 岡崎市橋目町字中新切 1, masato.kuchita@mitsubishi-motors.com

Reduced speed of sound technique (RSST) is applied for the combustion reaction flow. The RSST formulation including the effect of the multi-component flow is derived from governing equations of fluid dynamics and thermodynamics. The numerical calculation results of one-dimensional flame propagation analysis using RSST are shown for the case that the reduction parameters of the speed of sound is uniform and non-uniform. As a result, it is found that RSST for combustion analysis is effective only when the reduced speed of sound parameter is small.

1. 緒言

従来,エンジン開発では決められた開発期間に対応するため, 時間ステップを比較的大きくとれる陰解法ベースの商用 CFD コ ードを用いた燃焼解析が一般的に行われてきた.一方,近年乗用 車用ガソリンエンジンは高効率化のため高圧縮比化されているこ とからノッキングの発生が問題となってきているが,強い圧力波 が発生するようなノッキング現象を陰解法ベースのソルバーで再 現することは難しい.そのため我々は、ノッキング現象を精度よ く計算可能な陽解法のソルバーを開発し、定容燃焼容器を対象と したノックの解析を行ってきた¹⁰.しかしながら、陽解法のソルバ ーは CFL 条件のため時間ステップが制限され、エンジンの燃焼計 算の様に長時間のシミュレーションを行うことは難しい.

このような CFL 条件の問題を解決するため, 近年堀田らは音速抑 制法(RSST: Reduced speed of sound technique)を提案している³. この 手法は、音速を意図的に減速させることで CFL 条件を緩和させ、よ り大きな時間ステップを取ることを可能とする手法である.

燃焼 CFD においても、既然部の大きな音速によって時間ステッ プが制限されるため、RSST を用いれば大きな時間ステップを取る ことが可能となり、計算速度の向上が期待される.しかしながら、 堀田らが提案したオリジナルの RSST は、基本量を時間発展させ る必要があること、密度変化が背景場より十分小さい場合のみ有 効であること、また平均場を設定する必要があることから、燃焼 CFD への応用は難しかった.これに対し、近年飯島らは上記の問 題を解決した新たな RSST の fom を提案した³⁾.本研究ではこの 飯島らが提案した fom を燃焼 CFD に適用するため、多成分系の 化学種の輸送にも対応した RSST の fom を導出し、燃焼現象を対 象とした解析を行って計算速度の向上が可能か検討した.

2. PVS form を用いた多成分系の支配方程式の定式化

2. 1 多成分系 PVS form

本研究では保存量の連続の式,運動量の保存式,エネルギーの 保存式および化学種の保存式に対して,飯島らが提案した準保存 系のRSSTの一つであるPVS form³⁾を適用する. Euler 方程式に対 してPVS を適用すると下記の(1)~(4)式となる.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = -\left(1 - \frac{1}{\xi^2}\right) \left(\frac{\partial \rho}{\partial P}\right)_s \Delta P \tag{1}$$

$$\frac{\partial(\rho v_i)}{\partial t} + \nabla \cdot (\rho v_i \boldsymbol{v}) + \frac{\partial P}{\partial x_i} = -\left(1 - \frac{1}{\xi^2}\right) \left(\frac{\partial \rho v_i}{\partial P}\right)_{v,s} \Delta P \qquad (2)$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left[(E+P)\boldsymbol{\nu} \right] = -\left(1 - \frac{1}{\xi^2}\right) \left(\frac{\partial E}{\partial P}\right)_{\boldsymbol{\nu},\boldsymbol{s}} \Delta P \tag{3}$$

$$\frac{\partial(\rho Y_n)}{\partial t} + \nabla \cdot (\rho \nu Y_n) = -\left(1 - \frac{1}{\xi^2}\right) \left(\frac{\partial \rho Y_n}{\partial P}\right)_{\nu,s} \Delta P \qquad (4)$$

Copyright © 2019 by JSFM1

ここで、 ρ は密度、viはi方向の流速、aは抑制前の音速、Eは全 エネルギー、Pは圧力、Ynは化学種nの質量分率である。また、 とは音速を抑制するパラメータであり、実効的な音速を 1氏に減速 させることができるため、計算速度はよ倍となる。 Δ Pは音速を減 速する前の圧力の時間変化を表す、次に、(1)~(4)式の右辺に表れ る保存量に対する圧力の偏微分量を(5)~(8)式に示す。

$$\left(\frac{\partial\rho}{\partial P}\right)_{s} = \frac{1}{a^{2}} \tag{5}$$

$$\left(\frac{\partial\rho v_i}{\partial P}\right)_s = \frac{v_i}{a^2} \tag{6}$$

$$\left(\frac{\partial E}{\partial P}\right)_{v,s} = \frac{e + P + \rho v^2/2}{\rho a^2}$$
(7)

$$\left.\frac{\partial\rho Y_n}{\partial P}\right)_s = \frac{Y_n}{a^2} \tag{8}$$

また,この圧力の時間変化ΔPを基本量 ρ, e, Y₁,・・, Y_{N1} で表記すると(9)式となる.

$$\Delta P = \left(\frac{\partial P}{\partial \rho}\right)_{e,Y} \Delta \rho + \left(\frac{\partial P}{\partial e}\right)_{\rho,Y} \Delta e + \sum_{n=1}^{N-1} \left\{ \left(\frac{\partial P}{\partial Y_n}\right)_{\rho,e,Y_{m\neq n}} \Delta Y_n \right\}$$
(9)

ここで、e は内部エネルギー、Y_{m≠n}は Y_n以外の化学種の質量分率 である.また、 $\Delta \rho$ 、 Δe 、 ΔY_n は各変数の時間変化を表す.本研 究では(9)式に示す化学種の時間変化を含む ΔP を導出し、多成分 系の化学種の輸送を考慮した PVS form を構築した.

2. 2 化学種の輸送を考慮した圧力の時間変化 ΔP の導出

次に,基本量で記述された圧力の時間変化 ΔP を保存量の輸送 方程式の移流成分を含む form に変形する.

そのため, (9)式の計算に必要な基本量に対する圧力の偏微分値と 基本量の時間変化を求める.まず, (9)式右辺第一項は, ρ, Ρ, e につ いて Maxwell の関係式⁴を用いると

$$\left(\frac{\partial P}{\partial \rho}\right)_{e,Y} = -\left(\frac{\partial e}{\partial P}\right)_{\rho,Y}^{-1} \left(\frac{\partial e}{\partial \rho}\right)_{P,Y}$$
(10)

となる.ここで、(10)式の右辺は、熱力学第一法則を用いると下記の(11)、(12)式となる.

$$\left(\frac{\partial e}{\partial P}\right)_{\rho,Y} = \frac{\rho T}{P_s} \tag{11}$$

$$\left(\frac{\partial e}{\partial \rho}\right)_{P,Y} = \frac{e+P}{\rho} - \frac{\rho T a^2}{P_s}$$
(12)

ここで,Sはエントロピーである.また,Psは(13)式となる.

$$P_{S} = \left(\frac{\partial P}{\partial S}\right)_{\rho,Y} = \frac{P}{C_{v}}$$
(13)

次に、(9)式の第3項について定式化を行う.この項は、化学種の 質量分率が変化することで圧力が変化する効果である.そこで(10) 式と同様に、e,P,Ynに対して Maxwell の関係式を立てる.

$$\left(\frac{\partial P}{\partial Y_n}\right)_{\rho,e} = -\left(\frac{\partial e}{\partial P}\right)_{\rho,Y}^{-1} \left(\frac{\partial e}{\partial Y_n}\right)_{\rho,P} = -\rho \left(\frac{\partial e}{\partial P}\right)_{\rho,Y}^{-1} \left(\frac{\partial u}{\partial Y_n}\right)_{\rho,P}$$
(14)

ここで計算の便宜上, $(\partial e/\partial Y_n)_{\rho,P}$ については内部エネルギー $e(J/m^3)$ の代わりに比内部エネルギーu(J/kg)を用いて表した.また, 化学種の保存性を考慮してuを下記(15)式のように表す⁵⁰.

$$u = \sum_{n=1}^{N} u_n Y_n = \sum_{n=1}^{N-1} (u_n - u_N) Y_n + u_N$$
(15)

(15)式をYnで偏微分すると(16)式を得る.

$$\left(\frac{\partial u}{\partial Y_n}\right)_{\rho,P} = u_n - u_N + \sum_{m=1}^{N-1} \left(\frac{\partial u_m}{\partial Y_n} - \frac{\partial u_N}{\partial Y_n}\right) Y_m + \frac{\partial u_N}{\partial Y_n}$$
$$= u_n - u_N + C_v \left(\frac{\partial T}{\partial Y_n}\right)_{\rho,P}$$
(16)

ここで(16)式の右辺第3項は、状態方程式を用いて

$$\left(\frac{\partial T}{\partial Y_n}\right)_{\rho,P} = -\frac{T}{R} \left(\frac{\partial R}{\partial Y_n}\right)_{\rho,P} = -\frac{T}{R} \left(R_n - R_N\right) \tag{17}$$

となる.ここで、 $\mathbf{R}(\mathbf{J}/\mathbf{kg}\cdot\mathbf{K})$ はガス定数であり、 $R = \sum R_n Y_n$ である.(16)と(17)式から、(14)式は下記の(18)式となる.

$$\left(\frac{\partial P}{\partial Y_n}\right)_{\rho,e} = -\rho \left(\frac{\partial e}{\partial P}\right)_{\rho,Y}^{-1} \left\{u_n - u_N - \frac{T}{\gamma - 1}(R_n - R_N)\right\}$$
(18)

次に、保存量 $\Delta \rho$ 、 $\Delta (\rho v_i)$ 、 ΔE 、 $\Delta (\rho Y_n)$ の時間変化と基本量の時間 変化 Δe 、 ΔY_n を導出する.まず保存量の時間変化は(19)式となる.

$$\Delta \rho = -\nabla \cdot (\rho v)$$
$$\Delta (\rho v_i) = -\nabla \cdot (\rho v_i v) - \frac{\partial P}{\partial x_i}$$

$$\Delta E = -\nabla \cdot \left[(E+P) \upsilon \right]$$

 $\Delta(\rho Y_n) = -\nabla \cdot (\rho \boldsymbol{\nu} Y_n)$

次に、Δeは運動量保存則とエネルギー保存則を用いると、

$$\Delta e = \frac{\partial}{\partial t} \left(E - \frac{1}{2} \rho \boldsymbol{v}^2 \right)$$
$$= \frac{\partial E}{\partial t} - \frac{1}{2} \left[\boldsymbol{v} \cdot \frac{\partial (\rho \boldsymbol{v})}{\partial t} + \rho \boldsymbol{v} \cdot \frac{\partial \boldsymbol{v}}{\partial t} \right]$$
$$= -\nabla \cdot \left[(E + P) \boldsymbol{v} \right] + v_i \left[\nabla \cdot (\rho v_i \boldsymbol{v}) + \frac{\partial P}{\partial x_i} \right] - \frac{1}{2} \boldsymbol{v}^2 \nabla \cdot (\rho \boldsymbol{v})$$
$$= \Delta E - v_i \Delta (\rho v_i) + \frac{1}{2} \boldsymbol{v}^2 \Delta \rho$$
(20)

となる. ここで, i については Einstein 規約によって総和を省略した. 次に, ΔY_n は化学種の保存測を用いると(21)式となる.

$$\Delta Y_n = \frac{\partial}{\partial t} \left(\frac{\rho Y_n}{\rho} \right) = -\frac{1}{\rho} \nabla \cdot (\rho \boldsymbol{\nu} Y_n) + \frac{Y_n}{\rho} \nabla \cdot (\rho \boldsymbol{\nu})$$
(21)
Copyright © 2019 by JSFM2

さらに、(18)式と(21)式を用いると(9)式の第3項は(22)式となる.

$$\sum_{n=1}^{N-1} \left[\left(\frac{\partial P}{\partial Y_n} \right)_{\rho, e, Y_{m \neq n}} \Delta Y_n \right]$$

$$= \sum_{n=1}^{N-1} \left\{ -\rho \left(\frac{\partial e}{\partial P} \right)_{\rho, Y}^{-1} \left[u_n - u_N - \frac{T}{\gamma - 1} (R_n - R_N) \right] \times \left[\frac{Y_n}{\rho} \nabla \cdot (\rho v) - \frac{1}{\rho} \nabla \cdot (\rho v Y_n) \right] \right\}$$

$$= - \left(\frac{\partial e}{\partial P} \right)_{\rho, Y}^{-1} \left\{ \left[\left[u - u_N - \frac{T}{\gamma - 1} (R - R_N) \right] \Delta \rho \right\} + \sum_{n=1}^{N-1} \left\{ \left[u_n - u_N - \frac{T}{\gamma - 1} (R_n - R_N) \right] \Delta (\rho Y_n) \right\} \right\}$$
(22)

ここで,mはn以外の化学種を表す.以上を纏めると,(9)式は下記の(23)式となる.

$$\Delta P = \left(\frac{\partial e}{\partial p}\right)_{\rho,Y}^{-1} \left\{ + \left\{\frac{1}{2}v^2 - \left(\frac{\partial e}{\partial \rho}\right)_{P,Y} + \left[u - u_N - \frac{T}{\gamma - 1}(R - R_N)\right]\right\} \Delta \rho - v_i \Delta(\rho v_i) + \Delta E - \sum_{n=1}^{N-1} \left\{\left[u_n - u_N - \frac{T}{\gamma - 1}(R_n - R_N)\right] \Delta(\rho Y_n)\right\}\right\}$$
(23)

このように、圧力の時間変化 ΔP を化学種の輸送 $\Delta(\rho Y_n)$ が考慮された form に PVS を拡張することができた.

3. 数値計算手法

(19)

本研究で開発したソルバーは、流体計算と化学反応計算を分離 して時間積分を行う時間分離法を用いている.流動計算の時間積 分には3次精度 TVD Runge-Kutta 法を用い、化学反応計算の時間 積分には陰解法ベースの Sparse Solver を使用した.移流項は基本 量を MUSCL 法で補間して高次精度化し、数値流束を HLLC^のス キームで評価している.この HLLC に用いる特性線の音速は、 RSST によって抑制された音速を用いた.また、数値振動を抑える ため minmod 制限関数を利用している.輸送係数の評価について は、粘性係数に Wilke の半経験式、熱伝導率に Wassiljewa の式、 拡散係数に Chapman と Cowling の式を用いた.これらの輸送係数 の評価は非常に計算負荷が高いため、化学種バンドル法[®]を用い て高速化した.また、Block structured AMR 法を用いて高速化を行 った.

4. 解析条件

本研究では、図1に示す1次元の層流火炎伝播を対象とした解 析を行い、RSSTの効果と計算精度の検証を行った. 燃料にはCH4

第 33 回数値流体力学シンポジウム D10-3

を用い、CH4/O₂/N₂の混合気とした. O₂ と N₂の体積比は 21:79 で ある. 混合気の当量比は 1.0 とし、混合気の初期圧力 P₀を 0.1MPa, 初期温度 T_uを 300K とした. 点火は、x=0.0~1.0mm の間に 2650K の既燃ガスを与えることで模擬し、火炎伝播を発生させる. メッ シュサイズは、火炎面付近のように化学種が急激に変化する場所 で 20 μ m となるように AMR を設定した. 時間ステップは音速の

Copyright © 2019 by JSFM3

CFL 条件が 0.8 となるように設定した. 壁面の境界条件は断熱と している. 化学反応機構には, GRI Mechanism Ver3.0 (53 化学種, 325 反応式)をリダクションした Lu らの skeletal モデル⁹ (30 化学 種, 184 反応式)を用いた.

音速の抑制パラメータ ξ は,空間的に一様とする方法と,空間 的に変化させた方法を試行した.

Fig.6 Time variation of pressure at flame zone

5. 解析結果

5.1 を空間的に一様にした場合

まず、 ξを空間的に一様とした場合の結果を示す. ξ は ξ=1.0, 1.1, 1.3, 1.5 の 4 パターンとした. ここで、 ξ=1.0 は RSST を用い ない場合と同等である.まず図 2 に示す火炎面位置の時間変化を 見ると、 ξ=1.1 の場合は ξ=1.0 と大きな差はないが、 ξの増大に伴 って火炎伝播速度が速くなり、圧力の上昇も速くなった.このこ とから、 ξの増大によって計算精度が悪化することがわかる.そ こで、この要因を調べるため火炎面が 30mm 付近まで進んだ状態 の火炎帯の構造を ξ=1.0 の場合と比較した.まず、単位体積当た りの熱発生率 dQ を比較すると、 ξの増大に伴って熱発生率は低下 しており火炎伝播速度の関係と逆の傾向となっている.この原因 は、容器全体で密度 ρ が ξの増大に伴って低下しているためと考 えられる.また、図 4 に示すように容器内の総質量も ξの増大に 伴って初期の質量から低下していることから、火炎伝播速度が増 加した要因は、質量の保存性の悪化による燃焼速度の増大である と考えられる.

次に RSST によって質量の保存性が悪化する要因について考察 する. (1)式から, RSST では質量保存則に補正項を付加するため質 量の保存性が成立しなくなることがわかる. この RSST による補 正項は、ξと圧力の時間変化ΔPが大きいほど影響が強く、質量の 保存性を悪化させる. そこで、容器全体の圧力の時間変化ΔPを調 べた.まず、圧力が最も変化すると考えられる火炎帯付近の圧力 の時間変化ΔP は、図 6 に示すように反応帯では化学反応による 大きな圧力上昇に匹敵する圧力低下が予熱帯から反応帯にかけて 見られた.これは、化学反応による圧力上昇を緩和させる膨張効 果である.一方、容器全体の圧力の時間変化ΔPを見てみると、図 7 に示すように容器全体で圧力が変化していることがわかる.こ れは、火炎帯で発生した圧力波が容器内を伝播するために発生す るものと考えられる.このような現象は、火炎伝播では必ず発生 するものである.このため燃焼 CFD に RSST を適用すると、圧力

変化に相当する RSST の補正項が、質量保存式の中で生成項の様 に働き、質量保存を著しく悪化させてしまうと考えられる. さら に、図 15 に示す化学種分布を見ると、その増大によって火炎体内 の構造や平衡濃度が著しく悪化する様子が見られる. これも、 RSST による補正項の付加によって化学種のバランスが変化した 結果であると考えられる. このように、燃焼現象では大きな圧力 変化を伴うため、燃焼 CFD に対して音速抑制法を適応するのは原 理的に困難であることがわかった.

5. 2 *< < を*空間的に変化させた場合

5.1 節で述べた保存性の問題に対応するため、そを空間的に変化 させた解析を行った.本研究では先行研究で提案されている その form を利用した.

$$\xi = [1 + (a/C_{max})^4]^{1/4}$$
(24)

ここで、 C_{max} は実効音速 ag の上限値を意味し、実効音速 ag は a→∞で C_{max} に漸近する. この form を用いれば、音速に応じて が変化するため音速が小さい低温(未燃)部では *ξ*を小さく、音速が 大きい高温(既燃)部では *ξ*を大きくすることが可能となる. そのた め、図9に示すように大きな圧力低下が発生している予熱帯の補 正効果をある程度制限できると考えられる. この C_{max} を、本研究 では C_{max} =800、700、600 と設定して解析を行った. この場合の *ξ* は音速に対して図8のように変化する. これを本解析に適応させ ると、*ξ*は火炎帯付近では図9のような分布となり、未燃部および 火炎帯において *ξ*を小さくできる一方で、音速が大きい既燃部で は *ξ*を大きくとることが可能となる. これによって、最も圧力の 変化が大きい火炎帯付近で質量の保存性が改善されることが期待 される. ここで、各 C_{max} =600の場合 *ξ*=1.37、 C_{max} =700の場合 *ξ*=1.51、 C_{max} =600の場合 *ξ*=1.73 となる.

この ξ を用いた計算結果を図 10~13 に示す.まず図 10~12 の 火炎面位置,圧力,全質量の履歴を見ると, Cmax が 700 以上では 概ね ξ =1.0 の場合を再現できており,火炎帯の密度分布や熱発生

第 33 回数値流体力学シンポジウム D10-3

Copyright © 2019 by JSFM5

率,化学種分布にも問題がないことがわかる.しかしながら,Cmax を 600 まで小さくすると,火炎伝播速度が ξ=1.0 よりも速くなった.これは,ξが一様の場合と異なり密度分布にさほど誤差がないことを考えると,熱発生率の増大が原因であると考えられる. この熱発生率の差は化学種の保存性の悪化とそれに伴う化学種のバランスの変化が原因と考えられる.特にξが大きいほうが H2O の生成量が多く,発熱量も大きいことを示唆している.また, Cmax=600 では火炎が壁面に到達した時点の圧力がを=1.0よりも大 きくなっており,質量の保存性も悪化している.これは、Cmax=600 ではCmax=700,800と比べて火炎帯内のをが大きくなるためと考え られる.以上のことから,燃焼CFDでRSSTを用いるためには質 量と化学種を保存する手法が必要であると考えられる.

5.3 質量の保存性を改善する方法の提案

5.1, 5.2 節において, RSST を燃焼 CFD に用いると質量の保存 性が悪化する問題があることがわかった.そこで,近年開発され た化学反応計算の高速化技法である, ERENA 法¹⁰の考え方を応 用して質量の保存性の改善を試みた.

(1)式から,全空間領域においてΔt秒間に発生する質量の誤差は, 理論的に(25)式で表すことができる.

$$\Delta M = \Delta t \int_{V} -\left(1 - \frac{1}{\xi^{2}}\right) \left(\frac{\partial \rho}{\partial P}\right)_{s} \Delta P dV$$
(25)

この ΔM を用いて抑制後の密度 ρ と化学種の密度 ρY_n を補正する.

$$\rho' = \frac{1}{1 + \Delta M/M}\rho \tag{26}$$

$$(\rho Y_n)' = \frac{1}{1 + \Delta M/M} \rho Y_n \tag{27}$$

この補正を用いた結果,図 14,15 に示すように火炎面と圧力履歴 に若干の改善が見られ,図16に示すように質量の保存性は改善さ れた.火炎帯付近の様子もξ=1.0 とほぼ一致している.この結果 から,質量の誤差がそれほど大きくない場合にはこのような補正 が有効であると考えられる.

6. 結言

燃焼 CFD に音速抑制法を適用させるため、オリジナルの PVS form に対して化学種の輸送に対する圧力の時間変化の効果を追加 した form を導いた. この form を用いて1次元の火炎伝播解析を 実施した結果、そが空間的に一様の場合は、その増大に伴って誤差 が大きくなった. 一方で、そを空間的に変化させる方法では、そが 空間的に一様の場合よりも計算精度が向上した. ただし、最大実 効音速 C_{max} を小さくしていくと誤差が増大することがわかった.

7.謝辞

本研究で提案した多成分系の PVS form の導出にあたり,名古屋 大学 宇宙地球環境研究所 飯島 陽久特任助教に助言頂いた.ここ に感謝の意を表する.

参考文献

- (1) 林,久保,口田,"圧力の輸送方程式に基づいたノック抑制手 法の検討," 第57回燃焼シンポジウム講演論文集,(2019)
- (2) Hotta, H., Rempel, M., Yokoyama, T., Iida, Y., Fan, Y., "Numerical Calculation of Convection with Reduced Speed of Sound Technique," Astronomy and Astrophysics 539 A30, (2012)
- (3) Iijima, H., Hotta, H., and Imada, S., "Semi-conservative reduced speed of sound technique for low Mach number flows with large density variations," Astronomy and Astrophysics 622 A157 (2019)
- (4) 棚橋 隆彦, "連続体の力学(2)", 理工図書: (1986).
- (5) Fedkiw, R. P., Merriman, B., Osher, S., "High Accuracy Numerical Methods for Thermally Perfect Gas Flows with Chemistry, " JOURNAL OF COMPUTATIONAL PHYSICS 132, AIAA (1997), pp.175-190
- (6) Shuen, J. S., Liou, M. S., Van Leer, B., "Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry," Journal of Computational Physics 90 (1990), pp.371-395.
- (7) Toro, E. F., "Riemann solvers and numerical methods for fluid dynamics: a practical introduction," Springer Science & Business Media (2013).
- (8) Lu, T. F., Law, C. K., "Diffusion Coefficient Reduction through Species Bundling," Combustion Flame, Vol.148, No.3 (2007), pp.117-126,
- (9) Lu, T F, Law, C. K., "A criterion based on computational singular perturbation for the identification of quasi steady state species, A reduced mechanism for methane oxidation with NO chemistry," Combustion and Flame, Vol.154 No.4 (2008),pp.761-774.
- (10) Morii, Y., Terashima, H., Koshi, M., Shimizu, T., Shima, E., "ERENA: A fast and robust Jacobian-free integration method for ordinary differential equations of chemical kinetics," Journal of Computational Physics, Vol.322 (2016), pp. 547-558.
- (11) Adrien, T., "General and exact pressure evolution equation" Physics Letters A, 381-44 (2017), pp. 3739-3742