第39回数値流体力学シンポジウム プログラム

2025年12月16日(火) 10:00-11:40

開始時刻	A室	B室	C室	D室	E宰	F宰	
981 252 Pet 201	OS1-1	OS2-4	OS2-1	OS1-2	OS3-4	ΓΞ	
	081-1	USZ- 4	052-1	051-2	053-4		
	打大 四 冲孔	古古地 7			地域環境と防災(都市・建築, 海岸・河川・		
	乱流, 渦, 波動	直交格子・適合細分化格子法	非圧縮流れ解法、圧縮流れ解法	混相流体, 相変化, 反応, 界面	湖沼, 防災など)		
	片岡 武(神戸大)	高橋 俊(JAXA)	北村 圭一(横国大)	大森 健史(阪公大)	重枝 未玲(九工大)		
	OS1-1-1-01	OS2-4-1-01		OS1-2-1-01		🔪	
	<u>逆回転の縦渦列と散逸構造</u>	格子ボルツマン法を用いた住宅設備機器開発		複雑流体中のキラルマイクロスイマーの直接			
		<u>のための気液二相流シミュレーション</u>		<u>数値計算</u>			
10:00	〇内堀 和昭1、大西 楷平1(1. 株式会社 計	〇佐々木 一真1、渡辺 勢也2 (1. TOTO株式会		小林 巧弥1、Molina John1、〇山本 量一1 (1.			
	算流体力学研究所)	社、2. 九州大学)		京都大学)			
	OS1-1-1-02	OS2-4-1-02	OS2-1-1-01	OS1-2-1-02	OS3-4-1-01		
	超音速流におけるスパイラル渦崩壊発生の十			粒子間の流体力学的相互作用が平行平板間	制震版を有する洋上風車モノパイル式基礎周		
	分条件について	<u>流シミュレーション</u>	<u>検討</u>	<u>懸濁液流れの実効粘度に与える影響</u>	りの流れ解析に関する二、三の検討		
10.00							
10:20	〇比江島 俊彦1 (1. 大阪公立大学)	◎堀内 雄介1、松下 真太郎1、末包 哲也1(1.	〇阿部 敏彦1(1. 共立女子短期大学)	〇川口 美沙1、福井 智宏2(1.信州大学、2.	〇三浦 成久1、吉田 誠1、音田 慎一郎2 (1. 五		
		東京科学大学)		京都工芸繊維大学)	洋建設株式会社、2. 京都大学)		
	OS1-1-1-03	OS2-4-1-03	OS2-1-1-02	OS1-2-1-03	OS3-4-1-02		
	1.流の非局所渦粘性率の解析とモデリング	032-4-1-03 フォーム計算に向けた界面活性剤輸送を含む		いる1-2-1-03 料弾性流体と気泡を含む多孔質媒体の超音	結氷河川における津波溯 トの1次元浮体連成		
	<u>乱流の非局所満粘件率の解析とモデリング</u>	フォーム計算に向けた水面活性剤輸送を含む 混相流シミュレーション	ドガベースSIMPLE法の圧縮性拡張を応用	波減衰特性:重質油回収のための基礎的検	新水河川にあける津波勝上の1次元字体単放 解析モデル構築に関する検討		
		正相流シミュレーション		波波表符注: 里自油凹收仍/2000基礎的快			
10:40	〇半場 藤弘1 (1. 東京大学)	○松下 真太郎1、山下 脩1、末包 哲也1 (1. 東	○大西 陽一1 (1. アドバンスソフト株式会社)	○ ○ ○ 福屋 智大1、松島 亘志2、金川 哲也2 (1. 筑	〇志村 裕貴1、白井 秀和1、吉川 泰弘1(1. 北		
10.40	〇十場 膝如 (「果尽入子)	○松下 真太郎1、田下 情1、木己 省也1(1. 東 京科学大学)	○人四 陽一 (1. アトハンヘノノト株式云社)	波大学大学院、2. 筑波大学)	日本 日本 元本 元本 元本 元本 元本 元本		
		X1177(7)		ILLANT POLICE SAIDONT	ルエネスチ/		
	OS1-1-1-04	OS2-4-1-04	OS2-1-1-03	OS1-2-1-04	OS3-4-1-03		
	埋め込み境界法を用いた複雑形状周りの境	適合格子細分化(AMR)法を用いた気液二相	高忠実な圧縮性流体ソルバーFFVHC-ACEに	剛体流体密度が同じ場合の埋込境界法	リーマン不変量に基づく河川数値モデルの境		
	界層流れの全体安定性解析	LBMへの温度場実装	よる航空機空力騒音の壁面モデルLES		界条件処理の改善と応用		
11:00	〇藤井 陽向1、廣田 真2、服部 裕司2(1. 東北	◎森本 大稀1、金田 昌之1、中務 茂樹1、村上	〇淺田 啓幸1、河合 宗司1(1. 東北大学)	〇杉山 和靖1,2、廣畑 佑真1、林 真史1(1.大	○旭 一岳3,1、清水 康行3,2、南 まさし3,4(1.		
	大学大学院情報科学研究科応用情報科学専	将梧1 (1. 大阪公立大学)		阪大学、2. 理化学研究所)	株式会社RiverLINK、2. 北海学園大学、3. 一般		
	攻、2. 東北大学流体科学研究所)				社団法人iRIC-UC、4. パシフィックコンサルタン		
					ツ株式会社)		
	OS1-1-1-05	OS2-4-1-05	OS2-1-1-04	OS1-2-1-05	OS3-4-1-04		
	チャネル乱流における大規模構造の対称性	AMR 格子を用いた空調用圧縮機内部の冷媒		粒子間衝突に及ぼす潤滑層および電荷の影	救命胴衣形状が生存性に与える影響の数値		
		流れの非定常シミュレーション	<u>ダルリミッタ―の拡張</u>	響	流動解析による検討		
44							
11:20	〇渡邉 誠也1、西川 靖幸1、本木 慎吾1、河原		〇芳賀 臣紀1(1. 宇宙航空研究開発機構)	〇梅崎 航1、大西 領1(1.東京科学大学)	ーノ瀬 航平1、〇中村 恭志1(1. 東京科学大		
	源太1(1.大阪大学)	真太郎1、川畑 真一2、妹島 周吾2(1. 東京科			学)		
		学大学、2. ダイキン工業株式会社)					
		l	1	1	l		
11:40			昼食(・	~13:00)			
	EEC 10.007						

2025年12月16日(火) 13:00-14:40

開始時刻	A室	B室	C室	D室	E室	F宏
	OS1-1	OS2-4	OS2-1	OS1-2	OS3-4	
	乱流, 渦, 波動	直交格子•適合細分化格子法	非圧縮流れ解法、圧縮流れ解法	混相流体, 相変化, 反応, 界面	地域環境と防災(都市・建築, 海岸・河川・ 湖沼, 防災など)	
l \	塚原 隆裕(東理大)	嶋田 宗将(神大)	芳賀 臣紀(JAXA)	杉山 和靖(阪大)	白井 秀和(北見工大)	
	OS1-1-2-01 温放出を伴う能動遊泳モデルの位相ダイナミ クス解析 〇飯間信1(1. 広島大学大学院統合生命科学 研究科)	OS2-4-2-01 垂直上昇流における単一気泡の成長と熱伝達に対する管径の影響 ◎行光 実桜1、佐々木 大輔1、川本 裕樹2、高 橋 俊3、編家 英23(1,大阪公立大学, 2. 東	OS2-1-2-01 高次精度FR法における新しい安定で高解像 度な粘性項スキーム ◎本間一誠1、淺田 啓幸1、河合 宗司1(1. 東 北大学)	OS1-2-2-01 非平衡乱流場における慣性粒子クラスタリングの数値計算 ②富永健斗1、大西領1(1.東京科学大学)	OS3-4-2-01 圧力勾配を考慮した固定床下流部の局所洗掘に関する3次元数値解析 〇村増健太1、音田慎一郎1(1.京都大学)	
	OS1-1-2-02 高解像度直接数値計算による圧縮性乱流の	海大学、3. 宇宙航空研究開発機構) OS2-4-2-02 運動量保存性スキームによる気流中の水適	のS2-1-2-02 厳密にエントロビー保存を満たす数値粘性なし	OS1-2-2-02 界面保存則ペースの均質媒体キャピテーショ	OS3-4-2-02 1次元士石流シミュレーションにおける抵抗則	
13:20	工本ルギー散逸 ○櫻井 幹記1、高安 啓輔1、野崎 雄太1、岡 泰資1、横川 三津夫2、石原 卓3 (1. 横浜国立 大学、2. 東北大学、3. 岡山大学)	の速度変化・合体・分裂のシミュレーション 〇長崎 孝夫1、青木 尊之1、佐野 聡紀1、片山 達也2(1. 東京科学大学、2. ダイキン工業)	[上安定な新しい圧縮性気液二相流KEEPス キーム ◎吉田 壮希1、河合 成孝1、河合 宗司1 (1. 東 北大学)	<u>ンモデルによる熱力学的効果の数値計算</u> ◎渡部 健人1、津田 伸一2、金川 哲也3 (1. 筑波大学大学院、2. 九州大学、3. 筑波大学)	の比較 重核 未玲1、〇十河 佑宇1 (1. 九州工業大学 大学院)	
	OS1-1-2-03 前向き <u>段差による三次元境界層の構流れ不</u> 安定性制御効果の検証 ○廣田 真1、奥山 太陽1、服部 裕司1 (1. 東北 大学流体科学研究所)	OS2-4-2-03 <u> </u>	OS2-1-2-03 <u>一次元パーガース方程式におけるHOISTと</u> MDG-ICEの比較研究 ⑥謝 天1、玉置 義治1、今村 太郎1 (1. 東京大学)	OS1-2-2-03 単独置周リのキャピテーション流れのRANS解析における遷移モデルの妥当性 ⑥長澤 寛1、高峯 大輝2、津田 伸一2、渡邉 聡2 (1. 九州大学大学院、2. 九州大学)	OS3-4-2-03 <u>- 般座標系での流れ解析モデルを用いた円</u> 柱周りの局所洗掘解析 〇笠島 光司1、音田 慎一郎1(1. 京都大学)	
	OS1-1-2-04 Dissimilar heat transfer enhancement through parallel porous plates with inflow pulsations at low Reynolds numbers OFengbo Guan1, Ming Liu1, Yosuke Hasegawa1 (1. Institute of Industrial Science, The University of Tokyo)	OS2-4-2-04 極超音速機の概念設計における非構造格子 左用いた数値計算の実用可能性に関する検 討 ⑥小笠原 寛人1、小島 良実2、青山 剛史2、橋 本 敦2 (1. 東京農工大学、2. 宇宙航空研究開 発機構)	OS2-1-2-04 3次元気液二相流へのパラメータ適応型疑似 圧縮性法の適用性 ⑥山口 翼1、杉山 和靖1 (1. 大阪大学)	OS1-2-2-04 血管内における被膜気泡の超音波振動特性 Nguyen Nam Quoc2、武石 直樹3、荻 真優子 2、Chabouh Georges4、〇金川 哲也1 (1. 筑波 大学、2. 筑波大学大学院、3. 九州大学、4. ソ ルポンヌ大学)	OS3-4-2-04 遊砂地における土砂・流木挙動と減災効果に 関する基礎的研究 ◎石倉 美佳子1、木村 一郎1、原田 紹臣2 (1. 富山大学、2. 三井共同建設コンサルタント)	
	OS1-1-2-05 後退平板境界層乱流遷移における表面組さ の影響調査 〇中川 皓介1、焼野 藍子1 (1. 東北大学)	OS2-4-2-05 2次元直交格子を用いたShock-Fitting法の基 礎的研究 ©西尾 朋人1、今村 太郎1 (1. 東京大学)	OS2-1-2-05 圧縮性超臨界流れ保存解法における圧力平 衝条件の高次籍度化 ◎伊藤 開1、寺島 洋史1 (1. 北海道大学)	OS1-2-2-05 コロケート格子を用いた気液二相流の数値シ ミュレーション手法の開発 渡邊 大記1、O久木元 翔太、後藤 晋1 (1. 大阪大学)	満演取り下げ	
14:40			休憩(~14:50)		
					and the standard of the	

2025年12月16日(火) 14:50-16:30

BEAL på del	\ =	5 m	2020年12月10日(人)			
開始時刻	A室	B室	C室	D室	E室	F至
	OS1-1	OS2-4	OS3-3	OS1-2	OS3-4	
	714 72 4-21	++46 -> >+ A 400 / 11.46 -> >+	輸送用機械に関連する流れ(航空宇宙,船	72574 454 C = 87	地域環境と防災(都市・建築, 海岸・河川・	
	乱流, 渦, 波動	直交格子・適合細分化格子法	舶海洋,鉄道,自動車など)	混相流体,相変化,反応,界面	湖沼. 防災など)	
	ACRE (2/2 + 1)	A LL Large LS		/math.at-1-6/1.40.1.3	- I+ I= I	
	飯間 信(広島大)	今村 太郎(東大)	金崎 雅博(都立大)	伊藤 高啓(中部大)	音田 慎一郎(京大)	
	OS1-1-3-01	OS2-4-3-01	OS3-3-1-01	OS1-2-3-01	OS3-4-3-01	
	超関数法による過層方程式の解析とその有用		圧縮水素充填における0次元から3次元モデル		次元圧縮と深層学習を用いたリアルタイム浸	
	性について	直交格子法の検証	への展開手法の開発	Including Combustion with OpenMP and	水域予測におけるメッシュ解像度の影響評価	
14:50				<u>OpenACC</u>		
14:50	〇瀧 雄也1、石井 良夫2(1. 創価大学大学院	◎川城 英嵩1、寺島 洋史1、大島 伸行1(1.北 海道大学大学院)	〇山田 英助1、田村 陽介1 (1. 一般財団法人 日本自動車研究所)	OBenjamin Stéphane, Jean-Marc YGORRA1,	◎山口 歓太1、中山 龍也1、一言 正之2、樫山	
	理工学研究科情報システム工学専攻、2. 創価 大学理工学部情報システム工学科)	海坦人子人子阮/ 	口本日劉単研究所)	Shoma Nakano1, Hibiki Okuda1, Tsuboi Tsuboi1 (1. Kyushu Institute of Technology)	和男3(1.中央大学大学院、2.日本工営株式会社、3.中央大学)	
	人子理工子部情報グステム工子科)			Isuboli (I. Kyushu Institute of Technology)	云位、3. 中关入子)	
	OS1-1-3-02	OS2-4-3-02	OS3-3-1-02	OS1-2-3-02	OS3-4-3-02	
	 フラクタル樹木周りの非平衡乱流に対する大	052-4-3-02 薄い平板解析における埋め込み境界法の距	053-3-1-02 固有直交分解法を用いた簡易車室内モデル	051-2-3-02 直交カットセル法によるデンドライト結晶成長	053-4-3-02 同期学習と河川普遍モデルによる河川水位予	
	プラクタル樹木高りの非平衡乱流に対する大 規模数値解析	<u>薄い平板解析における理の込み境界法の距</u> 離パラメータの検討	回有直父分解法を用いた間易里至内モナル の高効率換気手法の検討		四班子百と河川青畑七丁ルによる河川水位予	
	<u> </u>	離ハフメータの検討	<u>の高効率機気手法の検討</u>	シミュレーション	<u>28U</u>	
15:10	0		0 m 1 0 m 2 + 0 t m 2 m 2 m 2 m 3 m 3 m 3 m 3 m 3 m 3 m 3	O the state of the country of the co		
10:10	◎YIN YUWEI1、大西 領1、渡辺 勢也2、長田	◎井上 翔太1、船田 光星1、佐々木 大輔1、川	〇西小倉 暉1、中島 卓司1、伊藤 和樹1、陸田			
	孝二3、青木 尊之1(1. 東京科学大学、2. 九州 大学、3. 京都大学)	本 裕樹2、高橋 俊3 (1. 大阪公立大学、2. 東 海大学、3. JAXA)	秀実1(1.広島大学院 先進理工系科学研究 科 先進理工系科学専攻 輸送環境システム	手大学)	水 雅樹1 (1. 大阪大学)	
	入子、3. 京都入子)	海人子、3. 3AAA)	流体研究室)			
			加州切九王 /			
	OS1-1-3-03	OS2-4-3-03	OS3-3-1-03	OS1-2-3-03	OS3-4-3-03	
	短い助走距離で完全発達チャネル乱流を達成	US2-4-3-03 埋め込み境界ナビエ・ストークス方程式の壁モ	タイヤの回転と接地動作を解像したT-Spline		RAINFALL ENHANCEMENT INDUCED BY IN-	
	する乱流促進体の設計	<u>デル</u>	による自動車の高精度流体解析	壁面モデルLES	CLOUD TURBULENCE OVER IDEALIZED	
	9 WHI MILITE PAOPER AT	1776	による日到手の同相及加体性初	<u>学面 C 7 70 CC3</u>	BELL-SHAPED MOUNTAINS	
15:30	◎林 駿太1、坂詰 宙世1、難波江 佑介2、深潟	〇大島 伸行1 (1. 北海道大学)	 ◎小林 来生1、徐 兆京1、ロボ エヴァンジェリ	〇岡野 泰人1、芳賀 臣紀1(1. 宇宙航空研究	OHewawasam Alisandirisge Anuththara	
10.00	康二1(1. 慶應義塾大学、2. 東京理科大学)	〇八岛 仲111(1: 北海道八千)	○ 小谷 未主には 元京に口がエファンフェリン1、滝沢 研二1、テズドゥヤー タイフン2 (1. 早		Ishani Senavirathna Bandara1, Onishi Ryo1,	
	派—— (1. 皮心线至八)(5. 水水平)(7.		稲田大学、2. ライス大学)	1713 0 100 1177	Joe Hirai1 (1. Institute of Science Tokyo)	
	OS1-1-3-04	OS2-4-3-04	OS3-3-1-04	OS1-2-3-04	OS3-4-3-04	
	熱力学と整合する2次元乱流のゆらぐ格子ボ	ROM援用埋め込み境界法による準粒子解像	噴流衝突壁面に設置したリブ構造物による伝	融解による氷粒子の形状・質量変化を考慮し	台風大気境界層解析における海面抗力係数	
	ルツマン法による直接数値計算	計算に向けた検討-定常解や時間平均場を利	熱抑制と混合促進の両立に関する研究	た氷スラリー流の熱流動解析	の影響評価	
		<u>用したモデル化-</u>				
15:50	◎橋本 丈瑠1、田之上 智宏2、荒木 亮1(1. 東	〇永田 貴之1、髙橋 駿太1、野々村 拓1(1.名				
1	京理科大学、2. 大阪大学)	古屋大学)	農工大学 岩本研究室、2. 東京農工大学 村	美沙2(1.信州大学大学院総合理工学研究科	中央研究所)	
1			田研究室)	工学専攻機械システム工学分野、2. 信州大学		
				学術研究院工学系)		
	004 4 0 05	000 1 0 05		1004 0 0 05	1000 1 0 05	
	OS1-1-3-05	OS2-4-3-05	OS3-3-1-05	OS1-2-3-05	OS3-4-3-05	
	リブレットを設置した成層乱流の対数則に基づ			ベナール・マランゴニ対流におけるパタン維持	風に追従する雨滴シミュレーションにおける	
1	<u>く抵抗低減率の予測</u>	面モデルLES	格子手法の高速化の検討	条件の検討	カップリング手法の影響	
18.10			O. L. E. Suitte (4, Y. 1, 1447 D. A. T.	0*111 #±4 .1.± #±4 /4 88± 1 #5	O = 1	
16:10	◎小出 悠太郎1、守 裕也1、王 萌蕾1、宮嵜	〇河合 成孝1、河合 宗司1(1. 東北大学)	〇大橋 訓英1(1.海上技術安全研究所)	◎前川 佑太1、山本 恭史1(1. 関西大学)	〇真光 俊樹1、仲吉 信人1、安井 響希1(1. 東	
	武1、難波江 佑介2(1.電気通信大学、2.東京 理科大学)				京理科大学)	
	理性人子)					
				1		
16:30			休憩(~	~16:40)		
L						

2025年12月16日(火) 16:40-18:20

開始時刻	A室	B室	C室	D室	F蓥	F壶
Bashi talah	0S1-1	OS2-4	OS3-3	OS1-2	OS3-4	I ±
	乱流, 渦, 波動	直交格子・適合細分化格子法	************************************		地域環境と防災(都市・建築, 海岸・河川・ 湖沼, 防災など)	
$I \sim V$	岩本 薫(農工大)	佐々木 大輔(阪公大)	村山 光宏(JAXA)	金川 哲也(筑波大)	小野 浩己(電中研)	
16:40	OS1-1-4-01 音波を介した-植並び四柱流れの同期現象 O山中 宙也1、服部 泰知1、河合 成孝1、岩 谷優汰1、前島 颯樹1、蓼沼 烈1、河合 宗司1	OS2-4-4-01 2D Aerodynamic Topology Optimization of an Airfoil's Trailing-Edge Region Using Modified Cellular Automata with Volume of Solid ©Punnathone Songjakkaew1, Yoshiharu Tamaki3, Taro Imamura2 (1, Graduate	OS3-3-2-01 リブ頂部の摩耗が台形濃形リブレットの抵抗 低減効果に与える影響 ○金子 賢人1、栗田 充1、阿部 浩幸1、笹森 萌奈美1、古賀 星吾1、黒田 文武2 (1. 宇宙航	OS1-2-4-01 Front-trackingと境界要素法によるエレクトロ ウェッティングの電気流体力学シミュレーショ と ©宮田 直拓1、山本 恭史1 (1. 関西大学)	OS3-4-4-01 <u> </u>	
	(1. 東北大学)	Student, Department of Aeronautics and Astronautics, The University of Tokyo, 2. Professor, Department of Aeronautics and	空研究開発機構、2. 菱友システムズ)			
	OS1-1-4-02	OS2-4-4-02	OS3-3-2-02	OS1-2-4-02	OS3-4-4-02	
	乱流境界層遷音速キャビティ音におけるスパン幅と境界層厚さがRossiterモードに与える影	POD-Galerkin Projectionを援用した物体周り 流れの低解像度埋め込み境界法計算	一様流中または地面近傍を移動する楕円翼 の空力特性に関する数値シミュレーションおよ	円盤衝突流により形成されるウォーターベル の体積と内部圧力に関する数値解析と実証実	<u>乱流応力の制御を用いた流入条件生成法の</u> 境界層流れLESへの適用	
17:00	○藤本 雄登1、前島 楓樹1、河合 宗司1(1.東 北大学)	〇高橋 駿太1、永田 貴之1、野々村 拓1 (1.名 古屋大学)	び風洞宝驗 〇浅井 平蔵1、Al Hajri Hilal Amur Izdihar1、 平田 勝哉1(1. 同志社大学)	歴 〇田中 喜大1、長谷川 洋介2、大澤 崇行2(1. 東京大学 教養学部 理科一類、2.東京大学 生産技術研究所 革新的シミュレーション研究 センター)	〇須藤 仁1、中尾 圭佑1、服部 康男1 (1. 電力中央研究所)	
	OS1-1-4-03	OS2-4-4-03	OS3-3-2-03	OS1-2-4-03	OS3-4-4-03	
	DNSによる振動格子乱流の統計平均量に系	埋め込み境界法とFW-H法を用いた遠方場騒	強制振動カプセルの動的安定性に対するマッ	衝突面の材質変化を再現した液滴衝突ダイナ	矩形物体周りの大気拡散を迅速に予測する数	
	<u>の回転が及ぼす影響の調査</u>	音予測に関する検証	ハ数効果のLES解析	ミクスの数値的検証	値モデルの開発	
17:20	◎鷲見 竜雅1、山田 格2、森西 洋平2 (1. 名古屋工業大学大学院生、2. 名古屋工業大学大学院)	〇石田 崇1、小島 良実1、伊藤 靖1、村山 光 宏1、平井 亨2、田中 健太郎2(1. 宇宙航空研 究開発機構、2. 株式会社 菱友システムズ)	◎蓼沼 烈1、山本 恭子1、藤井 愛美1、服部 泰知1、河合 宗司1 (1. 東北大学)	〇仁村 友洋1、武藤 真和1、松田 健1.2、石丸 瑛2、相原 慎太郎2、松井 則政2、玉野 真司1 (1. 名古屋工業大学、2. SCREEN HD)	◎土田 七夏1、櫻井 幹記1、岡 秀行2、木村 新太2、浅見 光史2、岡 泰資1 (1. 横浜国立大 学、2. 海上技術安全研究所)	
	OS1-1-4-04	OS2-4-4-04	OS3-3-2-04	OS1-2-4-04	OS3-4-4-04	
	斜め方向進行波制御による平行平板間乱流 の抵抗低減効果	埋め込み境界法における表面物理量の積分 と可視化について	一様吹出し・吸込みによる抵抗低減の全機シ ミュレーション	3次元GNBC-Front-trackingによる角を有する 壁面における濡れの表現	台風時の都市境界層に発生する組織構造が 都市キャノピー内の乱流場に及ぼす影響	
17:40	◎伊東 宏起1、守 裕也1、王 萌蕾1、宮嵜 武1 (1. 電気通信大学)	〇高木 亮治1 (1. 宇宙航空研究開発機構)	〇岩倉 幹弥1、深潟 康二1、三浦 千里1、Rey Ronan (1. 慶応義塾大学)	〇井口 加尉1、山本 恭史1(1. 関西大学)	〇河合 英徳1、田村 哲郎2 (1. お茶の水女子 大学、2. 東京工業大学)	
	OS1-1-4-05	OS2-4-4-05	OS3-3-2-05	OS1-2-4-05		
	非線形非モード解析による超音速圧縮性境界	物体非適合格子における保存誤差を考慮した	突起を付した細長物体遷音速域空力特性の	滑り速度のある表面に対する埋め込み境界		
	屋の遷移過程に関する研究	流東積分による非定常空力評価法	Delayed DES · Zonal DES解析	法:射影法によるアプローチ		
18:00	〇谷口 伸隆1、焼野 藍子1 (1. 東北大学流体 科学研究所)	◎大盛 優太1、河合 成孝1、河合 宗司1 (1. 東 北大学)				
					※発表者は①	(ただ)、②は発表者で 若手優悉謙演表彰の候補者)

※発表者は〇(ただし、〇は発表者で、若手優秀講演表彰の候補者)

2025年12月17日(水) 8:50-10:30

開始時刻	A室	B室	C室	D室	E荤	F室
bat and and	0S1-1	OS3-1	OS3-5	OS1-2	OS1-3	OS3-3
	乱流, 渦, 波動	複雑流体の流れ(混相流, 非ニュートン流体の流れ, 反応流, 燃焼流, 電磁流体・プラズマ流など)		混相流体, 相変化, 反応, 界面	原子・分子の流れ	輸送用機械に関連する流れ(航空宇宙, 船 舶海洋, 鉄道, 自動車など)
	本告 遊太郎(阪大)	森井 雄飛(東北大)	山田 和豊(福岡大)	高木 周(東大)	山口 康降(阪大)	大橋 訓英(海技研)
8:50		OS3-1-1-01 燃料障の拡散火炎特性に及ぼす雰囲気圧 力、酸素濃度、温度条件の解明 ②久保 圭輝1、瀬戸ロ 拓海1、岩元 大地1、赤木 富士雄1 (1. 福岡大学)	OS3-5-1-01 配管内における様々な弁の開閉時の流れの 三次元数値シミュレーション 〇浦野 有希子1、森 義仁1、河野 巧2、河村 哲也2.1 (1. お茶の水女子大学、2. エンジニア リング協会)		OS1-3-1-01 2次元層状材料と制限空間内の水との界面に おける熱輸送特性の分子論的研究 ◎高橋 航大1、安盟2、塩見淳一郎2、菊川 豪太1 (1. 東北大学、2. 東京大学)	Alle side side side side side side side sid
	OS1-1-5-01	OS3-1-1-02	OS3-5-1-02	OS1-2-5-01	OS1-3-1-02	OS3-3-3-01
	後退平板上の三次元境界層における段階・強	高圧ロケット燃焼器におけるH2/O2および	管路内に設置された種々のオリフィスを通過	Enhanced Droplet Evaporation Modeling for	極低温領域における酸水素混合の熱物性評	LESによる衝撃波失速フラッタ一解析の試み
	制遷移の速度場および圧力場の情報理論解 析 ⑥中島 英哲1、中川 皓介2、塚原 隆裕1、荒木 亮1(1. 東京理科大学、2. 東北大学)	CH4/O2の燃焼振動特性比較 ◎下山 凌空1、寺島 洋史1 (1. 北海道大学)	する流れの数値シミュレーション 〇皆川 晶子1、浦野 有希子1、森 義仁1、河野 巧2、河村 哲也2(1. お茶の水女子大学、2. エンジニアリング協会)	Two-Phase Detonation with n-Heptane Fuel	価: PIMD(パス積分分子動力学)とSRKモデル の比較 〇帆足 真尋1、永島 浩樹2、寺島 洋史3、坪井 伸幸1 (1. 九州工業大学、2. 琉球大学、3. 北海 道大学)	〇三宅 冬馬1、寺島 洋史1 (1. 北海道大学大学院)
	お臨界条件下でのゴルフボールおよび滑面球	OS3-1-1-03 <u>障害物のタンデム配置による喧霧燃焼振動の</u> <u>抑制</u>	OS3-5-1-03 パフェット現象を伴う遷音速混り空気流れの数値シミュレーション	OS1-2-5-02 原爆のキノコ雲発達過程に対する支配方程式 系の影響に関する数値解析	OS1-3-1-03 分子動力学を用いたアルカン-カルボン酸混 合液体の粘性特性評価	OS3-3-3-02 IDOF自由振動解析を用いた亜音速領域にお ける薄設エアロシェルの振動減衰メカニズム について
9:30	◎中岡 秀史1、西中川 祥太1、大貫 正秀2、佐 嶌 隆弘2、坪倉 誠1.3 (1. 神戸大学大学院シス テム情報学研究料。2. 住友ゴム工業株式会 社、3. 特定国立研究開発法人理化学研究所 計算科学研究センター)	◎白石 智大1、河合 真穂2、後藤田 浩1、難波 江 佑介1、黒瀬 良一2(1.東京理科大学大学院、2.京都大学大学院)	◎宅間智哉1、萩田泰晴1、宮澤弘法2、古澤卓2、山本悟2(1.東北大院、2.東北大)	◎中島 健太1、松尾 亜紀子2(1. 慶應義塾大学大学院、2. 慶應義塾大学)	〇岩嵜 粋人2、福島 啓悟1(1.福井大学学術 研究院工学系部門、2.福井大学大学院工学 研究科)	②桃井 蓮12、澤田 健32、長川 稜希42、青山 剛史2、大山 聖2、金崎 雅博4、宮路 幸二1(1. 横浜国立大学 2. JAXA宇宙科学研究所、3. 東京大学、4. 東京都立大学)
	OS1-1-5-03	OS3-1-1-04	OS3-5-1-04	OS1-2-5-03	OS1-3-1-04	OS3-3-3-03
		アンモニア混焼乱流噴流予混合火炎のDNSに	粗大液滴挙動を考慮したタービン翼列蒸気流	LES of a GH2/GO2 shear laver flame under	固体面上のナノ液滴の蒸発過程に関する分子	
	し・吸込みによる抵抗低減効果のマッハ数依 存性	よる局所火炎構造の解明とNOx生成AI予測モ デルの構築	<u>動の湿り損失予測</u>	rocket engine like conditions using Flux Reconstruction	<u>動力学シミュレーション</u>	動格子法と重合格子法の比較
9:50	任任: ⑥鈴木 嵩也1、大石 恭平1、難波江 佑介3、深 渴 康二2(1. 慶應義塾大学大学院、2. 慶應義 塾大学、3. 東京理科大学)	TLO45年 〇頭訪節 匠史1、WANG YE1、鈴木 佐夜香1、 店橋 護1(1. 東京科学大学)	◎森北 和志1、古澤 卓1、宮澤 弘法1、山本 悟1、笹尾 泰洋2、三宅 哲2、田畑 創一朗2 (1. 東北大学大学院情報科学研究科、2. 三菱重 工業株式会社)	Heconstruction OPatrick Strempfil, Takanori Hagal (1. JAXA's Engineering and Design Innovation Center)	中谷 海渡1、奈良 駿希2、〇小林 一道1、森田 好人2、高嶋 英厳2、藤井 宏之1、渡部 正夫1 (1. 北海道大学、2. AIS北海道)	◎長川 稜希1、金崎 雅博1、青山 剛史2、大山 聖2(1. 東京都立大学大学院システムデザイン 研究科航空宇宙システム工学域計算機援用 機体設計学研究室、2. 宇宙航空研究開発機 構宇宙科学研究所)
	OS1-1-5-04	OS3-1-1-05	OS3-5-1-05	OS1-2-5-04	OS1-3-1-05	OS3-3-3-04
	抵抗低減を目的とした吹出・吸込制御下の平行平板間利流における縦渦の発達減衰過程	2次元CFDを用いた弱デトネーションの安定性 に関する数値的研究		<u>爆轟波の反応解析に対する高効率・高速時間</u> 精分法の評価	1次元バリスティックダイオードのスピノルボル	グリッドフィンによるVTVLロケット降下空力制
	行半板間乱流における縦渦の発達滅衰過程	に関する数値的研究	性能低下に関する数値的研究	<u>箱分法の評価</u>	ツマン方程式による数値解析	御のマッハ数および迎角変化の影響
10:10	◎細内 翔太1、村田 章1、岩本 薫1(1. 東京農 工大学)	〇森井 雄飛1、丸田 薫1 (1. 東北大学 流体 科学研究所)	〇渡邊 美月1、藤村 宗一郎2、山本 誠2、福留 功二3、鈴木 正也4(1. 東京理科大学大学院、 2. 東京理科大学、3. 金沢工業大学、4. 宇宙航 空研究開発機構)	〇坪井 伸幸1 (1. 九州工業大学)	◎柴田 晴人1、田口 智清1、辻 徽郎1(1.京都 大学大学院情報学研究科)	〇横井 真奈1、金崎 雅博1、工藤 英俊 (1. 東京都立大学)
10:30			休憩(~	·10:40)	1	

2025年12月17日(水) 10:40-12:00

開始時刻	A室	B室	C室	D室	E室	F室
	081-1	OS3-1	OS3-5	OS1-2	OS1-3	OS4-1
	乱流, 渦, 波動	複雑流体の流れ(混相流, 非ニュートン流体の流れ, 反応流, 燃焼流, 電磁流体・プラズマ流など)	生可能エネルギー、発電技術、省エネルギーなど)	混相流体,相変化,反応,界面	原子・分子の流れ	大規模・高速計算、新しい計算資源の利用 (クラウド、量子コンピュータなど)
\vdash	河合 宗司(東北大)	高橋 俊(JAXA)	鈴木 正也(JAXA) OS3-5-2-01	山本 恭史(関西大) OS1-2-6-01	初鳥 匡成(京大) OS1-3-2-01	高木 亮治(JAXA)
	OS1-1-6-01 Elyer_Target法による副体円板系の結晶-流動相衝突と衝撃波伝播シミュレーション ②近藤 佑紀1、確部 雅晴1 (1. 名古屋工業大学大学院工学研究科)			USI-2-b-UI 変数気急の運動方程式にまとづく気泡クラウド の共振現象の数値解析 ◎山下 航輝1、阪 英悟1、渡村 友昭1、高木 周1(1 東京大学)	OSI-3-2-01 添面に水平に湯したナノスケールの固体円筒 の濡れの半径依存性 ○多田 翔太1、山口 康隆1 (1. 大阪大学)	OS4-1-1-01 マルチカラ—SOR法による3次元ポアソン方程 式の高速化と境界埋め込みナビエ・ストークス 方程式への適用 ◎中道信人1、大島伸行1(1.北海道大学)
	OS1-1-6-02	OS3-1-2-02	株式会社 神戸製鋼所、4. 福岡大学) OS3-5-2-02	OS1-2-6-02	OS1-3-2-02	OS4-1-1-02
	プータ駆動型非平衡壁モデルを用いた平面衝	053-1-2-02 壁面近傍気泡崩壊における圧力波および応力	000 0 2 02	OSI-2-6-02 接触線の移動に対する表面パターンの影響に	OS1-3-2-02 ナノスケールの疎液性欠陥を诵過する固気液	Os4-1-1-02 OpenACCによる圧縮性燃焼ソルバLS-
	アースを新生まー関 生モナルを用いた干面質 字暗流LES解析の検討		風車の流体音響解析	関する数値解析	接触線のミクロの描像	FLOW-HOのGPU化と性能最適化
11:00	◎石野 匠馬1、桑田 祐丞1、須賀 一彦2 (1. 大阪公立大学、2. 追手門学院大学)	〇山田 賢人1、佐々木 裕章2、伊賀 由佳3.1 (1. 東北大学大学院工学研究科、2. 日本原子 力発電(株)東海事業本部 東海第二発電所 保修室機械グループ、3. 東北大学流体科学研 究所)	◎永冨 颯大1、草野 和也1 (1. 九州大学)	◎川喜田 颯斗1、高木 周1、渡村 友昭1(1.東京大学)	〇山下 史流1、山口 康隆1(1.大阪大学)	〇渡部 修1、芳賀 臣紀1、高木 亮治1 (1. 宇宙 航空研究開発機構)
	OS1-1-6-03	OS3-1-2-03	OS3-5-2-03	OS1-2-6-03	OS1-3-2-03	OS4-1-1-03
	GPUを用いたプラズマ乱流の大規模解析	クロスフロー型液体燃料 直流の微粒化現象に関する数値解析: 衝突壁面のエッジの影響	アクチュエータラインモデルを用いた浮体式風 車ウエイクのラージエディシミュレーション	マルチグリッド法による境界データ埋め込み法の並列計算性能調査	固体表面における二原子分子気体の散乱業 動に対する吸着分子の影響	An architecture agnostic engineering scale CFD solver with scalable performance on CPUs and GPUs
11:20	◎彼末 侑也1、本告 遊太郎1、後藤 晋1 (1. 大 阪大学 基礎工学研究科)	〇北田 約也1、藤本 洋平2、三好 市朗2、黒瀬 良一1(1、京都大学、2. 三菱重工航空エンジン 株式会社)	〇澁谷 光一郎1、内田 孝紀1(1. 九州大学)	◎桑島 優也1、高木 周1、渡村 友昭1 (1. 東京 大学)	〇竹村 和城1、武内 秀樹1 (1. 高知工業高等専門学校)	Peter Ohm2, Kazuto Ando2, ORahul Bale1, Makoto Tsubokura1 (1. RIKEN Center for Computational Science, Kobe Univeristy, 2. RIKEN Center for Computational Science)
	OS1-1-6-04	OS3-1-2-04	OS3-5-2-04	OS1-2-6-04	OS1-3-2-04	OS4-1-1-04
	_	量評価	<u>体解析</u>	世ん断を受ける固体-流体混合系の動的挙動	流体力学方程式のためのkinetic scheme	大規模CFDに向けたテンソルネットワークの応 用可能性の検討
11:40	〇稲垣 和寛1 (1. 同志社大学)	◎岩島 昌也1、大西 領1 (1. 東京科学大学)	◎早川 亮太郎1、劉 洋1、石山 萌花1、乙黒雄斗1、滝沢 研二1、テズドゥヤー タイフン2(1.早稲田大学、2.ライス大学)	◎田中健太朗2、渡邊 大記2、大槻 道夫1.2 (1. 島根大学、2. 大阪大学)	〇矢野 猛1、稲葉 匡司1 (1. 大阪大学)	〇滝井 郁人1、大西 順也2、Kim Sangwon2、 Cho Younghwa3、坪倉 誠1.2 (1. 神戸大学、2. 理化学研究所、3. 北海道大学)
12:00			 昼	~13:20)		
				,	37.76 to 10.71 C)(ナだし、⑥は発表者で、若手優系護演表彰の候補者)

2025年12月17日(水) 13:20-14:40

開始時刻	A室	B室	C室	D室	E室	F室
	OS1-1	OS3-1	OS3-5	OS4-2	OS1-3	OS4-1
	乱流, 渦, 波動	体の流れ、反応流、燃焼流、電磁流体・プラズマ流など)	生可能エネルギー、発電技術、省エネル ギーなど)	流体データの処理と活用(可視化, プリ・ポスト処理, データ同化, 機械学習(人工知能), データ分析法, 設計探査, 最適化な	原子・分子の流れ	大規模・高速計算,新しい計算資源の利用 (クラウド,量子コンピュータなど)
	稲垣 和寛(同志社大)	伊賀 由佳(東北大)	古澤 卓(東北大)	下山 幸治(九大)	福島 啓悟(福井大)	坪倉 誠(神大)
	OS1-1-7-01	OS3-1-3-01	OS3-5-3-01	OS4-2-1-01	OS1-3-3-01	OS4-1-2-01
		粒子法を応用した数値モデルによる氷河の流	LES解析による斜流ポンプの吸込みエルボ起	ベイズ最適化と次元圧縮法を用いた小型翼胴	修正したEnskog方程式に対するH定理の数値	
	<u>ギーの輸送機構</u>	<u>動のシミュレーション</u>	因の入口偏流と性能への影響に関する研究	融合機の空力形状最適化	的検証	<u>と近似誤差の関係</u>
13:20	〇本告 遊太郎1、林 真史1、後藤 晋1 (1. 大阪 大学)	小紫 誠子1、⑥山下 颯介2(1.日本大学、2.日本大学大学院)	〇清水 駿助1、鈴木 孝之2 (1. (株)荏原製作 所技術·知的財産統括部基盤技術研究部流 体·熱·数値解析研究課、2. EBARA ELLIOTT ENERGY, R&D, Aero and Structural Dynamics.)	◎竹森 和希1、荻野 要介1(1. 高知工科大学)	◎坂田 颯馬1、高田 滋1、初鳥 匡成1、鷹橋 碧音1 (1. 京都大学大学院・航空宇宙)	〇吉田 侑紘1、佐藤 慎太郎1、大西 直文1、久 谷 雄一2(1. 東北大学、2. 九州大学)
	OS1-1-7-02	OS3-1-3-02	OS3-5-3-02	OS4-2-1-02	OS1-3-3-02	OS4-1-2-02
	回転平面Couette系におけるwayy	UCM流体中の粘弾性アルベン波とせん断波	乱流熱伝達促進におけるティアドロップディン	モード分解に基づくサロゲートモデルを用いた	分子動力学シミュレーションを用いた表面ナノ	テンソルネットワーク法を用いた格子ボルツマ
	inflow/outflow boundariesの解剖		プル面形状と脈動条件の多月的最適化	極超音速機の逆問題設計	バブル近傍の溶存空気拡散に対する連続体	ン法による乱流解析の試み
			27F 33 17 17 17 17 17 17 17 17 17 17 17 17 17		モデルの妥当性検証	<u> </u>
13:40	○高橋 亮太郎1、Generalis Sotos2、秋永 剛1 (1. 秋田大、2. アストン大)	〇三神 史彦1 (1. 千葉大学)	◎井上 昂典1、村田 章1、岩本 薫1 (1. 東京農 工大学)	〇高橋 俊1、永田 貴之2、谷 香一郎1、古賀勝1、磯野 達志1、竹腰 正雄1、富岡 定毅1、加藤 悠之3、佃 絢太3、佐々木 大輔3(1. 宇宙航空研究開発機構、2. 名古屋大学、3. 大阪公立大学)	◎高橋 由樹1、永島 浩樹2、徳増 崇3、渡邉聡1、津田 伸-1(1. 九州大学、2. 琉球大学、	〇浅賀 尭一1、木原 尚2、久谷 雄一2 (1. 東北 大学、2. 九州大学)
	OS1-1-7-03	OS3-1-3-03	OS3-5-3-03	OS4-2-1-03	OS1-3-3-03	OS4-1-2-03
	物体を過ぎる流れにより発生する表面波の実	帯電気流による渦放出安定化の要因解析	脈動を用いた同軸二重噴流の拡散抑制制御	サロゲートモデルを用いた金属粉末床のマル	波型壁面温度を持つ平行平板間に誘起される	超大規模分散学習を用いた三次元乱流縮約
	験的研究		に関する数値解析	チスケール溶融凝固モデリング		モデルの長期安定性評価
14:00	関根 康平1、礒崎 涼1、〇片岡 武1、Akylas Triantaphyllos2 (1. 神戸大学、2. マサチューセッツエ科大学)	〇高須賀 直一1、前田 登1、前田 和宏2 (1. 株式会社SOKEN、2. トヨタ自動車株式会社)	◎渡邉 匠真1、森本 悠伯1、山下 颯太1、赤木 富士雄1 (1. 福岡大学)	〇高岸 洋一1、千葉 晶彦1 (1. 東北大学 未 来科学技術共同研究センター)	◎神谷 英功1、田口 智清1、辻 撤郎1 (1. 京都大学大学院情報学研究科)	〇安藤 和人1、Bale Rahull 2、黒田 明義1、坪 倉 誠1.2 (1. 理化学研究所計算科学研究セン ター、2. 神戸大学)
	OS1-1-7-04	OS3-1-3-04	OS3-5-3-04	OS4-2-1-04	OS1-3-3-04	OS4-1-2-04
	乱流中の圧力変動のレイノルズ数依存性につ	プラズマアクチュエータ群で発生させた進行波	同軸二重旋回噴流の旋回速度が噴流の拡散	マグナス風車用回転円柱に取付けるフィン形	水分子の高クヌッセン数クエット流れの分子動	DF-PINNsを用いた非定常流れのシミュレー
	いての大規模DNSデータ解析	による抵抗低減を目指した直接数値計算	特性に及ぼす影響	<u>状と揚力生成の関係</u>	力学解析	ションに適したネットワークアーキテクチャに関
14:20	〇石原 卓1、岡本 直也2、金田 行雄3、横川 三津夫4(1. 岡山大学、2. 愛知工業大学、3. 名 古屋大学、4. 東北大学)	〇関根 湧斗1、吉田 泰大1、仁村 友洋2、村田章1、岩本 薫1 (1. 東京農工大学、2. 名古屋工業大学)	◎山下 颯太1、渡邉 匠真1、吉野 豪1、赤木 富士雄1 (1. 福岡大学)	〇鳥飼 和雄1、長谷川 裕晃1 (1. 宇都宮大学)	〇奈良 駿希1、森田 好人1、高嶋 英厳1、小林 一道2(1. 株式会社AIS北海道、2. 北海道大 学)	<u>する検討</u> 〇上月 圭裕1、田中 凱也1、大西 順也2、坪倉 誠12(1. 神戸大学、2. 理化学研究所計算科学 研究センター)
14:40			太 稙()	~14:50)		
14.40			小 思(17.00/)(ただ) 向け祭事者で、芝王原系護宗事部の好益者)

※発表者は○(ただし、◎は発表者で、若手優秀講演表彰の候補者)

2025年12月17日(水) 14:50-16:10

開始時刻	A室	B室	C室	D室	E室	F室		
	OS3-2	OS3-1	GS	OS4-2	OS2-3	OS4-1		
	種々の連成問題(音響, 流体一構造, 生体流れなど)	複雑流体の流れ(混相流、非ニュートン流体の流れ、反応流、燃焼流、電磁流体・プラズマ流など)	一般セッション	流体データの処理と活用(可視化, プリ・ポスト処理, データ同化, 機械学習(人工知能), データ分析法, 設計探査, 最適化な	法, 渦法, MDなど)	大規模・高速計算、新しい計算資源の利用 (クラウド、量子コンピュータなど)		
	横山 博史(豊橋技科大)	西田 浩之(農工大)	内田 孝紀(九大)	立川 智章(東理大)	出川 智啓(名大)	大西 順也(理研)		
14:50	数値計算 〇藤本 翔伍1、川畑 祐人1、石田 駿一1、松永 大樹2、今井 陽介1(1.神戸大学、2.大阪大 学)	OS3-1-4-01 MHDチャネル乱流におけるポンピングダイナ王 効果の解析 O楊 品衆1、半場 藤弘1 (1. 東京大学 生産 技術研究所)		OS4-2-2-01 田柱周り流れの計測融会シミュレーションにお 比るフィードバックカの物理量が再構築精度に 与える影響 ◎廣瀬 晃太1、宮内 優2 (1. 宮崎大学大学院 工学研究科、2. 宮崎大学工学部)	〇浅井 光輝1、藤岡 秀二郎1、岡野 翔大1 (1. 九州大学)	OS4-1-3-01 Time-stepping Hamiltonian Simulation for Solving Nonlinear PDEs via a Quantum— Classical Hybrid Approach OSangwon Kim1, Junya Onishi1, Ayato Takii2, Younghwa Cho3, Makoto Tsubokura1.2 (1. RIKEN Center for Compu		
	OS3-2-1-02	OS3-1-4-02	GS-1-02	OS4-2-2-02	OS2-3-1-02	OS4-1-3-02		
15:10	せん断流れ下の磁性液流のレオロジー特性 の数値解析: 批弾性の影響 〇松下優輝1、石田 駿一1、今井 陽介1 (1. 神	周方向磁場下における低ブラントル数流体の 円環容器内自然対流の線形安定性 〇今井 闘吾1、益田 卓哉2、田川 俊夫1 (1. 東	再使用ロケット実験機RV-Xの空力特性の数値解析:低マッハ数・大迎角乱流場の定常・非 定常計算の評価 〇井福剛司、坪井伸幸1、野中聡2、伊藤		流体と剛体・粒状体の相互作用に対する解像型・非解像型連成解析 〇辻 勲平1、ガルビン 妃羅1、高橋 和真1、浅	格子ボルツマン法に基づく流体シミュレーションのための量子回路実装 上野 和雅2.1、李 泰憲1、菅野 恵太1、〇樋口		
	戸大学)	京都立大学、2. 米子高專)	隆2 (1. 九州工業大学、2. 宇宙航空研究開発機構)	智也1、深渴 康二1 (1. 慶應義塾大学)	井 光輝2 (1. 東北大学、2. 九州大学)	颯人1(一株式会社QunaSys、2. 東京大学大学院理学系研究科)		
	OS3-2-1-03	OS3-1-4-03	GS-1-03	OS4-2-2-03	OS2-3-1-03	OS4-1-3-03		
	単純な流体発振器の二次元数値解析	広範囲せん断流れ場下でMR流体中磁性粒子	高等方性座標系上での流れの数値シミュレー	入出力のタイムホライズンが最適化アクチュ		Koopman-von Neumann線形化を用いた非線		
15:30	〇入山 裕仁1、平田 勝哉1(1.同志社大学大学院流体力学研究室)	が形成する粒子構造 〇安藤 努1、小池 修2、辰巳 怜2、廣田 憲之3 (1. 日本大学 2. プロダクト・イノベーション協	ション - 薄い流体層内流れの乱流遷移シ ナリオの検討 〇渡辺 毅1 (1. 公立大学法人長野大学)	<u>エータ位置と可制御性に与える影響</u> ○渡辺 昌仁1、佐々木 康雄1、永田 貴之1、 Jiang Shan1、成瀬 寛高1、野々村 拓1 (1. 名	田いた三相流計算手法の開発◎村田 雅大1、鈴木 康祐2、吉野 正人2、川口 美沙2 (1. 信州大学大学院 総合理工学研究科	 形電磁流体力学の量子アルゴリズム 〇樋口 颯人1.4、伊藤 優輝2、坂本 一樹2、藤井 啓祐2.56、吉川 顕正3.4 (1. 株式会社 		
		会、3. 物質・材料研究機構)		古屋大学)	工学専攻 機械システム工学分野、2. 信州大学学術研究院工学系)	Quna Sys、2. 大阪大学基礎工学研究科、3. 九州大学理学研究院、4. 九州大学国際宇宙惑星環境研究センター、5. 大阪大学量子情報・		
	OS3-2-1-04	OS3-1-4-04	GS-1-04	OS4-2-2-04	OS2-3-1-04			
	DPM-EWF連成モデルを用いた気道内咳嗽現象シミュレーションと飛沫生成因子の評価	イオンドラッグ型EHDマイクロポンプ内流れの 数値シミュレーション	数値解析によるリング飛行機の飛行特性に関する初期的知見	エンジンル―ム内部の圧力損失低減に向けた 随伴法に基づく物体配置最適化	化学反応を含む二相系格子ボルツマン法の 構築と二体液滴衝突問題への適用			
15:50	〇小林 直輝1、太田 信1、安西 眸1 (1. 東北大学)	〇松川 豊1 (1. 長崎総合科学大学)	〇上村 駿1、小島 大和1、春本 大基1、吉村 広明1、浅尾 慎一1(1. 産業技術短期大学)	〇湯口 雅也1、Chen Di2、渡邊 翔1、長谷川 洋介2 (1. 株式会社小松製作所、2. 東京大学 生産技術研究所)	◎齊藤 滉太1、吉野 正人2、鈴木 康祐2、川口 美沙2(1. 信州大学大学院総合理工学研究科 工学専攻機械システム工学分野、2. 信州大学 学術研究院工学系)			
16:10			休憩(*	~16:20)	·			
	FINEA (0.20)							

※発表者は○(ただし, ◎は発表者で, 若手優秀講演表彰の候補者)

2025年12月17日(水) 16:20-21:00

開始時刻	A室
16:20	特別講演① 古川 雅人 氏(九州大学 名誉教授,九州大学 洋上風力研究教育センター 特任教授) 「ターボ機械分野の実問題における非定常流動現象のCFD解析 ~ その過去・現在・そして未来 ~」 司会:下山 幸治(九州大学)
17:20	休憩(~17:30)
開始時刻	A室
17:30	特別講演② 池端 昭夫 氏(TOTO株式会社 技術本部 上席技師) 「TOTOにおけるHPC技術を用いたCFD計算時間短縮の取り組み」 司会:坪井 伸幸(九州工業大学)
18:30	移動(~19:00)
開始時刻	アートホテル小倉 ニュータガワ
19:00	意見交換会(~21:00)

2025年12月18日(木) 8:50-10:30

開始時刻	A室	B室	Cæ	D室	E室	F荥		
PRESIDENT PRE	OS3-2	OS3-1	OS2-2	OS4-2	OS1-3	1±		
		生物さけのされ /日わさ まー しいさ		流体データの処理と活用(可視化, プリ・ポ	33.3			
	種々の連成問題(音響, 流体ー構造, 生体	体の流れ、反応流、燃焼流、電磁流体・プ	連続体力学に基づく新規解法および既存	スト処理、データ同化、機械学習(人工知	原子・分子の流れ			
	流れなど)	ラズマ流など)	手法の改良	能), データ分析法, 設計探査, 最適化な				
	鈴木 康祐(信大)	松田 景吾(JAMSTEC)	滝沢 研二(早大)	下山 幸治(九大)	小林 一道(北大)			
		OS3-1-5-01	OS2-2-1-01	OS4-2-3-01	OS1-3-4-01			
		密度関数法による気液界面の大変形に関する		行列多様体を利用した形状の異なる物体周り	反応性力場によるポリビニルアミン/ポリビニ			
		基礎的研究	離散Helmholtz分解法	<u>流れのパラメトリック作用素推定</u>	ルアルコール複合膜における気体透過現象の			
0.50					分子論的解明			
8:50		〇坪郷 浩一1、垣内田 翔子1、奥藤 康司1(1. 徳山高専)	〇今村 純也1 (1. imi計算工学研究室)	〇中村 悠斗1、佐藤 慎太郎1、大西 直文1 (1. 東北大学)	◎冨田 結子1、都合 涼太郎1、佐藤 康平1、杵 淵 郁也1(1,東京大学)			
		(徳山高寺)		果北入子)	温 即也1(1. 果泉入子)			
	OS3-2-2-01	OS3-1-5-02	OS2-2-1-02	OS4-2-3-02	OS1-3-4-02			
	加速Multi-direct-forcing埋め込み境界法の	毛細管長さに基づくピン型フィン伝熱面上での	ルート追従を考慮した数値流体計算による空	動的モード分解とリザバーコンピューティング	ポリビニルアミン/ポリビニルアルコール複合			
	精度と数値安定性	プール沸騰の三次元シミュレーション	飛ぶクルマの運動性能評価手法の構築	を融合したモデル削減法の提案	膜における気体透過現象の非平衡分子動力			
					<u>学シミュレーション</u>			
9:10	〇鈴木 康祐1、Falagkaris Emmanouil3、	〇岩城 清雅1、辻本 公一1、安藤 俊剛1、髙橋		〇内山 祐介1(1.株式会社MAZIN)	◎都合 涼太郎1、冨田 結子1、佐藤 康平1、杵			
	Kruger Timm3、稲室 隆二2 (1. 信州大学、2.	護1 (1. 三重大学)	祐生1、浅尾 慎一3、竹内 誠一3、池田 高浩1		淵 郁也1(1.東京大学)			
	京都大学、3. エジンバラ大学)		(1. 京都工芸繊維大学、2. 神戸大学、3. 産業 技術短期大学)					
			技術 起朔人子》					
	OS3-2-2-02	OS3-1-5-03	OS2-2-1-03	OS4-2-3-03	OS1-3-4-03			
	高次多変量解析とCFDを用いたスキージャン	水平方向の強制振動で制御されたプール沸	USZ=Z=1=US リフト&クルーズ型eVTOLを対象とした飛行シ	034-2-3-03 追加入力を用いた機械学習ベース流れ場次	ひ3 -3-4-03 疎水化DNAのリポプレックスを介した聴貫通挙			
	プの初期飛行局面に関する研究	騰の三次元シミュレーション	ミュレーション手法の検討	元削減法の性能向上	動に関する分子動力学的解析			
	2 V M M M M M M M M M M M M M M M M M M		<u> </u>	200-1/2/A V/ 11-861-1-1-1	<u> </u>			
9:30	〇畑野 慎平1、嶋田 宗将1、バレラフール	〇橋本 周汰1、辻本 公一1、安藤 俊剛1、髙橋	〇谷口 祐輝1、山川 勝史1、滝井 郁人2、小林	◎宮迫 奎介1、中澤 希1、大道 浩志1、深潟	〇黒澤 秀人1、馬渕 拓哉2(1. 東北大学 大学			
	1,2、山本 敬三3、上野 智也3、石原 暢4、坪倉	護1 (1. 三重大学)	祐生1、佐藤 広都1、浅尾 慎一3、竹内 誠一	康二1(1. 慶應義塾大学)	院工学研究科、2. 東北大学 流体科学研究所)			
	誠1,2(1. 神戸大学大学院システム情報学研究		3、池田 高浩1(1.京都工芸繊維大学、2.神戸					
	科、2. 特定国立研究開発法人理化学研究所 計算科学研究センター、3. 北翔大学大学院生		大学、3. 産業技術短期大学)					
		OS3-1-5-04	000 0 1 04	004.0.04	001.0.4.04			
	OS3-2-2-03 流体-構造連成解析による低圧タービン静翼		OS2-2-1-04 プルキンエ線維を考慮した左心室および大動	OS4-2-3-04 カルマン渦放出現象のデータ駆動的位相感受	OS1-3-4-04 せん断流れによるミセル構造変化に関する分			
	<u>流体-構造連成解析による低圧タービン静泉</u> 列のフラッター予測: 片方向連成解析	Numerical investigation of droplet impingement on heated surfaces with	<u>フルキンエ級維を考慮した左心至わよい人</u> 脈内の血流シミュレーション	カルマン満放出現家のデータ駆動的位相感受 関数推定	<u>せん断流れによるミセル構造変化に関する分</u> 子動力学解析			
		different wettability	<u> </u>	<u>実 数 作 た</u>	<u>一到刀子解机</u>			
9:50	〇根岸 秀世1、雨川 洋章1、大野 真司2、藤原	OTianyi Wei1, Kenya Kitada1, Ryoichi	○岩井 美佐紀1、西谷 勇祐1、山川 勝史1、滝	〇服部 泰知1、山中 宙也1、前島 颯樹1、岩谷	〇田中 宏樹1、大森 健史2(1.大阪公立大学			
	大典2、賀澤 順一1 (1. 国立研究開発法人宇	Kurose1 (1. Kyoto Univ.)	井 郁人2、小林 祐生1、浅尾 慎一3、竹内 誠	優汰1、河合 成孝1、河合 宗司1 (1. 東北大学	大学院、2. 大阪公立大学工学研究科)			
	宙航空研究開発機構、2. 株式会社菱友システ		一3、池田 高浩1(1.京都工芸繊維大学、2.神	工学部工学研究科)				
	ムズ)		戸大学、3. 産業技術短期大学)					
	OS3-2-2-04	OS3-1-5-05	OS2-2-1-05	OS4-2-3-05	OS1-3-4-05			
	流体-構造連成解析による低圧タービン静翼	無重力下におけるshear-thinning流体から成	NURBS-Enhanced FEM (NEFEM)を用いた流	部分空間補間に基づく表面圧力データを利用	流体潤滑近似を用いたSynchronized			
	列のフラッター予測:双方向連成解析	<u>る液滴振動シミュレーション</u>	体構造連成解析手法の構築	Lた二次元翼周りの速度場推定	Molecular-Dynamics法の開発			
10:10	〇雨川 洋章1、根岸 秀世1、藤原 大典2、大野	○八重樫 優太1、村松 宏起1、島田 直樹1(1.	◎三宅 智大1、樫山 和男2(1. 中央大学大学	○重清 雄大1、佐藤 慎太郎1、大西 直文1(1.	〇竹田 優太1、安田 修悟1、小田 浩太郎2、岩			
10.10	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□ ○八里栓 復太 1、刊松 宏起 1、島田 直倒 1(1) 住友化学)	院、2. 中央大学)	● 単有 離入1、佐藤 倶太郎1、入四 直入1(1. 東北大学)	山 将士2、伊奈 智秀2(1,兵庫県立大学大学			
	宙航空研究開発機構、2. 株式会社菱友システ	上へ10丁/	PM 4. T. A. A. T.	N-10/1-7	院、2. 株式会社ダイセル)			
	ムズ)							
10.00			11 ±6 /	10.40)				
10:30			休憩(~10:40)				

2025年12月18日(木) 10:40-12:00

開始時刻	A室	B室	C室	D室	E室	F室
	OS3-2	OS4-3	OS2-2	OS4-2	OS2-3	
	種々の連成問題(音響, 流体ー構造, 生体	Flow analysis with the aid of data science (Transport phenomena, Complex flows)	連続体力学に基づく新規解法および既存	流体データの処理と活用(可視化, プリ・ポスト処理, データ同化, 機械学習(人工知	離似安系空胜法(私士法、恰士小ルフィン	
	流れなど)	(English-Based Session)	手法の改良	能)、データ分析法、設計探査、最適化な	法, 渦法, MDなど)	
	横山 博史(豊橋技科大)	Yosuke Hasegawa (U. Tokyo)	白崎 実(横国大)	中野 慎也(統数研)	吉野 正人(信大)	
,	OS3-2-3-01	OS4-3-1-01	OS2-2-2-01	OS4-2-4-01	OS2-3-2-01	
	蝶の前後二枚翼構造とリード・ラグ運動が飛	Transient causal modal analysis of unsteady	コンパクト差分を用いたCHNS方程式の直接数	PINNsによるPIV計測断面からの3次元流れ場	粒子法における自由表面粒子の団粒化解消	
	翔性能に与える影響	aerodvnamics: A local learning approach	値計算手法の開発	再構成手法に関する研究	に向けた粒子再配列法の提案	
10:40	○堀口 晃希1、鈴木 康祐2、吉野 正人2、川口	OKai Fukami1, Rvo Koshikawa1, Rvo Araki2	 	○村橋 廖紀1.2、安田 英将2、野々村 拓1 (1.	〇鈴木 新之助1、井上 恵天1、辻 勲平1、浅井	
	美沙2 (1. 信州大学大学院総合理工学研究科	(1. Tohoku University, 2. Tokyo University of	(新大学)	名古屋大学、2. 川崎重工業株式会社)	光輝2 (1. 東北大学、2. 九州大学)	
	工学専攻機械システム工学分野、2. 信州大学	Science)			7577- (11)(1157 () () () () ()	
	学術研究院工学系)					
	OS3-2-3-02	OS4-3-1-02	OS2-2-2-02	OS4-2-4-02	OS2-3-2-02	
	有声歯茎摩擦音/z/の声帯振動と舌運動が渦	Transient causal modal analysis of unsteady	BVD原理に基づく低散逸解法を用いた拡散界	低解像度CFDとPINNを組み合わせた2次元円	ISPH法における時間積分高精度化と計算効	
	形成と音発生に及ぼす影響	aerodvnamics: A global learning approach	面モデルによる酸素輸送解析	柱周り流れにおける形状最適化	率改善の検討	
11:00	◎増田 陽太1、吉永 司1、野崎 一徳2、和田	©Ryo Koshikawa1, Ryo Araki2, Qiong Liu3,	〇脇村 尋1、武石 直樹2、伊井 仁志1(1. 東京			
	成生1(1.大阪大学大学院基礎工学研究科、2.	Kai Fukami1 (1. Tohoku Univ., 2. Tokyo Univ.	科学大学、2. 九州大学)	匠1、長谷川 洋介3 (1. 東京大学大学院 工学	大学、2. 九州大学)	
	大阪大学歯学部附属病院)	Sci., 3. New Mexico State Univ.)		系研究科 機械工学専攻、2. 小松製作所 開発 本部、3. 東京大学生産技術研究所)		
				本部、3. 東京入子主座技術研究例)		
	OS3-2-3-03	OS4-3-1-03	OS2-2-2-03	OS4-2-4-03	OS2-3-2-03	
	流体音から非定常流体力を推定する機械学	Data-driven time-dependent modal analysis	BVD原理によるニューラルネットワーク代理モ	物理支配方程式を離散化しないPhysics-	DEMによる鋼繊維補強コンクリートの流動シ	
	習技術の数値的検証	for extreme vortex-gust airfoil interactions	デルの開発	Informed GNNによる熱拡散解析	ミュレーションモデル開発	
44.00						
11:20	◎加藤 聖崇1、草野 和也1(1.九州大学)	OShaghayegh Zamani Ashtiani1,2, Kai Fukami2 (1. University of Pittsburgh, 2.	〇桑原 択弥1、脇村 尋1、Huang Minsheng2、 肖 鋒1 (1. 東京科学大学、2. 上海交通大学)	◎奥原 景太1、下山 幸治1(1.九州大学)	〇西浦 泰介1、古市 幹人1(1.海洋研究開発 機構)	
		Tohoku University)	月 鉾1(1. 果泉科子入子、2. 上海父进入子)		(茂(再)	
		Torrord Offiversity)				
	OS3-2-3-04	OS4-3-1-04	OS2-2-2-04		OS2-3-2-04	
	<u>軸流ファンからの発生音に対する共鳴管を用</u>	Machine learning-based flow regime	圧縮性気液二相流モデルを用いた微細気泡	<u>講演取り下げ</u>	格子ボルツマン法のプログラムに対する単体	
	<u>いた制御の空力音響場解析</u>	identification for plasma turbulence	ダイナミクスの数値解析		テストの設計	
44.45						
11:40	〇河西 悦輝1、斎藤 悠登1、倉石 孝1、横山	OHiroshi Omichi1, Koji Fukagata2 (1. Keio	〇佐藤 柊太1、脇村 尋1、小方 聡2、伊井 仁		〇出川 智啓1、内山 知実1、高牟礼 光太郎2	
	博史1(1. 豊橋技術科学大学)	University Graduate School of Science and Technology, 2. Keio University)	志1(1. 東京科学大学、2. 東京都立大学)		(1. 名古屋大学、2. 秋田大学)	
		reciniology, 2. Relo offiversity)				
12:00				~13:20)		
						(ただ) 向け祭事者で 芝手原系護宗事彰の候補者)

※発表者は○(ただし、◎は発表者で、若手優秀講演表彰の候補者)

2025年12月18日(木) 13:20-14:40

開始時刻	A室	B室	C室	D室	E室	F室
	OS3-2	OS4-3	OS2-2	OS4-2	OS2-3	
	種々の連成問題(音響, 流体一構造, 生体流れなど)	Flow analysis with the aid of data science (Transport phenomena, Complex flows) (English-Based Session)	連続体力学に基づく新規解法および既存 手法の改良	流体データの処理と活用(可視化, プリ・ポスト処理, データ同化, 機械学習(人工知能), データ分析法, 設計探査, 最適化な	法、渦法、MDなど)	
	大谷 智仁(阪大) OS3-2-4-01	Kai Fukami (Tohoku U.) OS4-3-2-01	山川 勝史(京工繊大) OS2-2-3-01	大西 領(科学大) OS4-2-5-01	浅井 光輝(九大) OS2-3-3-01	
	US32-4-01 Time super-resolution of 4D Flow MRI in Transverse Sinus Stenosis: A comparative study between different schemes in	Development of a wall model for separated flows using bump-simulating blowing and suction	032-2-3-01 スラスト荷重変形を考慮し <i>た</i> IFA15MW参照風 車 <u>の流体解析</u>	B所流れ情報を用いた壁モデルLESにおける GANの適用とその性能評価	空気圧タンクの熱挙動解析に対する格子ボル ツマン法の適用と実験検証	
13:20	OJing Liao1, Ryo Torii2, Janneck Stahl3, Gaoyang Li4, Ali Alaraj5, Philipp Berg6, Makoto Ohta1, Hitomi Anzai1 (1. Institute of Fluid Science, Tohoku University, 2. Department of Mechanical Engineering,		◎石山 萌花1、劉 洋1、早川 亮太郎1、乙黒 雄斗1、滝沢 研二1、タイフン テズドゥヤー2(1. 早稲田大学、2. ライス大学)	〇遠藤 匠1、劉 明2、加藤 千幸3、長谷川 洋介2(1. 東京大学大学院工学系研究科機械工学専攻、2. 東京大学生産技術研究所、3. 日本大学理工学部)	〇肥後 寛1、清水 文雄1、許 宗素1、田中 和博1(1. 九州工業大学)	
	OS3-2-4-02	OS4-3-2-02	OS2-2-3-02	OS4-2-5-02	OS2-3-3-02	
	聴診法を用いた血圧計測の数値シミュレー ションによるコロトコフ音の解析	Application of inner laver forcing model to large-eddy simulation of turbulent boundary layer	リングセールパラシュートの回転対称アイソジ オメトリック流体構造連成解析	<u>状態変数による乱流モデルの提案</u>	円柱状狭窄部を含む円管内氷スラリー流の熱 流動解析	
13:40	〇相良 海斗1、玉川 雅章1 (1. 九州工業大学)	1 · ·	◎長瀬 太一1、三川 翔平1、寺原 拓哉1、高橋 康世1、永田 怜1、滝沢 研二1、テズドゥヤー タ イフン2 (1. 早稲田大学、2. ライス大学)		◎鶴巻 椋介1、吉野 正人2、鈴木 康祐2、川口 美沙2(1. 信州大学大学院総合理工学研究科 工学専攻機械システム工学分野、2. 信州大学 学術研究院工学系)	
	OS3-2-4-03	OS4-3-2-03	OS2-2-3-03	OS4-2-5-03	OS2-3-3-03	
	僧帽弁尖の接触動作を解像した方心室内の	Optimization of initial sensor placement for	3次元下肢モデルを用いたバシリスクトカゲの	多項式力オス展開を用いた平板翼流れ LES	円管内氷スラリー流の熱流動解析:粒子間反	
	<u>高精度流体解析</u>	estimating unknown scalar sources by adjoint analyses	水面走行の数値解析	の主流乱れによる不確実性定量評価	<u>発力および管径比が熱流動特性に与える影</u> 響	
14:00	〇寺原 拓哉1、滝沢 研二1、Tezduyar Tayfun E.2、小林 祐顕1 (1. 早稲田大学、2. ライス大 学)	OLinghui YANG1, Yosuke Hasegawa2 (1. Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan, 2. Center for Research on Innovative Simulation and Software,	〇大木 陽介1、白崎 実1 (1. 横浜国立大学)	〇浅田 健吾1、濱戸 昭太郎1(1. 宇宙航空研究開発機構)	● ②辻村 俊輔1、吉野 正人2、鈴木 康祐2、川口 美沙2(1. 信州大学大学院総合理工学研究科 工学専攻機械システム工学分野、2. 信州大学 学術研究院工学系)	
	OS3-2-4-04	OS4-3-2-04	OS2-2-3-04	OS4-2-5-04		
	Physics-Informed Neural Networks for	Nonlinear Optimization of Impulse Actuation Distribution in Meteorological Systems using	<u>直交格子上でのゴム膜を含む気液混相流れ</u> の2次元数値シミュレーション	強化学習による平行平板間乱流の運動量・熱 輸送の同時制御		
	Vessel Diameter Optimization in the Zebrafish Brain Vasculature using Velocity	Ensemble-Averaged Adjoint Sensitivity	02次元数値シミュレーション	<u> 判決の同時制御</u>		
14:20	OQiao Yang1, Nakajima Hiroyuki3, Hasegawa Yosuke2 (1. Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 2. Institute of Industrial Science, The University	OShan JIANG1, Takayuki NAGATA1, Masahito WATANABE1, Hirotaka NARUSE1, Yasuo SASAKI1, Taku NONOMURA1 (1. Nagoya University)	〇松本 佳也1、白崎 実2 (1. 横浜国立大学大学院環境情報学府、2. 横浜国立大学)	◎勝又 龍哉1、福島 直哉2(1. 東海大学大学院工学研究科、2. 東海大学工学部)		
14:40			休憩(-	~14:50)		

2025年12月18日(木) 14:50-16:10

開始時刻	A室	B室	C室	D室	E室	F室
	OS3-2 種々の連成問題(音響, 流体ー構造, 生体		GS	OS4-2 流体データの処理と活用(可視化, プリ・ポ		
	流れなど) 大谷 智仁(阪大)		一般セッション 矢吹 智英(九工大)	スト処理, データ同化, 機械学習(人工知能), データ分析法, 設計探査, 最適化な川原 慎太郎(JAMSTEC)		
14:50	OS3-2-5-01 細胞膜張力の緩和に起因した細胞質流動に 関する数値解析 ⑥苗村 侑生1、武石 直樹2、工藤 奨2 (1. 九州 大学大学院工学府機械工学専攻、2. 九州大 学大学院工学研究院)		GS-2-01 マイクロチューブを流れる水素の熱伝達特性 の数値解析 ©西並 希望1、洪 定杓1、浅古 豊2、Faghri Mohammad3 (1. 鹿児島大学、2. マレーシアエ 科大学、3. ロードアイランド大学)	OS4-2-6-01 <u>分極分解による非圧縮性流れにおける運動量 輸送の可視化</u> 佐野 太郎1、〇上野 和之1、松本 祐子1、石向 桂一2(1. 岩手大学、2. 旭川工業高等専門学 校)		
15:10	OS3-2-5-02 血小板のマージネーション現象の直接数値計算とランジュバンモデルの構築 ◎石川 浩史1、寺田 雄1、渡村 友昭1、高木 周1(1.東京大学 工学系研究科 機械工学専 攻)		動する放射性セシウムに関する数値解析 ○高瀬 和之1、高橋 拓人1 (1. 福島県環境創造センター)	OS4-2-6-02 プラズマアクチュエータの制御入力を伴った大 迎角翼周り流れ場のPOD解析と流れ制御へ の広田 ◎齋藤 叶1、高田 直輝1、渡辺 綾乃1、大友 衆示1、西田 浩之1 (1. 東京農工大学大学院)		
15:30	OS3-2-5-03 輸送散逸粒子動力学法による赤血球の動力 学を考慮した酸素輸送を含むゼブラフィッシュ 血流シミュレーション 一〇 富澤 駿1、中嶋洋行2、Li Zhen3、長谷川 洋介4(1、東京大学大学院工学系研究科機械 工学専攻、2、国立循環器病研究センター、3. クレムソン大学、4、東京大学生産技術研究所 革新的シミュレーション研究センター)		GS-2-03 <u>吸込孔付き非接触ステージ流れにおける浮上 高さ依存性の定常・非定常特性</u> 〇鈴木 博貴1、岡 宏昭1、藤原 順2、河内 俊 憲1 (1. 岡山大学、2. 国際技術開発㈱)	签 〇樫山 和男1、宮内 暖季1 (1. 中央大学)		
15:50				OS4-2-6-04 機械学習を用いた加熱源の表面温度分布に 基づく井戸孔内の流向流速推定 〇野村 拓未1、阪田 義隆1、冨田 アルパート 昇平1 (1. 金沢大学)	×8.8.8.12	

※発表者は○(ただし、回は発表者で、若手優秀講演表彰の候補者)