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A Visualization of the Noise Sources of Automotive Wind Noise Under the Floor
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Noise sources under an automotive floor were investigated numerically to get the information of improving the wind
noise. In thistest case, the floor shape of the vehicle was simplified and approximated by the Cartesian mesh model.
The computed flow structures were demonstrated by helicity and streamlines, and the distribution of the noise source
was visualized by Powell’s sound source term. Observing the generated MPEG movies, it was found that the vortex
structure and shear layer around the front tire influenced the noise source under the floor. From these visualized
results, the important information was obtained that the improvement of the flow around the front tire could be

reducing the wind noise.
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Fig. 1 A measured wind noise spectrum of avehiclein awind-

tunnel. In this example, low frequency region is dominant
rrather than typical production cars.
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Fig. 2 Voxel model for the flow computation.
0.02m Fig. 2 (Toal voxel is 128x384x128 and 20mm in size)
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Fig. 3 Instantaneous helicity distribution of the space under the
floor(Bottom view, left side is upwind direction). Click this
figure, then you'll find MPEG movie.
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(@) Range from -6000 to +6000. Click this figure, then you'll (b) Range from -1000 to +1000.
find MPEG movie.

Fig. 4 Instantaneous distribution of Powell’s noise source term div(w x V).

(a) Bottom view. (b) A horse-shoe vortex around the front tire.

Fig. 5 Stremlines around the front tire.
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Fig. 6 A flow around a cube on aflat plate[10]. A hose-shoe
vortex is visuaized by the volume rendering method.
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