等温-断熱壁間の圧縮性乱流のDNS

DNS of Compressible Turbulent Flow between Isothermal and Aadiabatic Walls

森西 洋平,名古屋工業大学,〒466-8555 名古屋市昭和区御器所町, E-mail:morinisi@cfd.mech.nitech.ac.jp 中林 功一,名古屋工業大学,〒466-8555 名古屋市昭和区御器所町, E-mail:nakabaya@cfd.mech.nitech.ac.jp 。 玉野 真司,名古屋工業大学大学院,〒466-8555 名古屋市昭和区御器所町, E-mail:shinji@cfd.mech.nitech.ac.jp Youhei MORINISHI, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya, Aichi, 466-8555, JAPAN Koichi NAKABAYASHI, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya, Aichi, 466-8555, JAPAN Shinji TAMANO, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya, Aichi, 466-8555, JAPAN

The main objective of this paper is to clarify the e[®]ects of the di[®]erence of the thermal wall boundary conditions on the mean velocity pro⁻le, the mean temperature pro⁻le, and the near-wall asymptotic behavior in compressible turbulent °ows. It is shown that the Van Driest transformation is the useful scaling for both isothermal and adiabatic walls. It is revealed that the near-wall behavior of the rms wall-normal velocity °uctuation in the compressible turbulent °ow is di[®]erent from that in the incompressible °ow.

1. はじめに

圧縮性壁乱流の理解は工学および工業上非常に重要で あるにも関わらず,非圧縮性乱流のものと比較すると十 分ではない.本論文では,文献¹において構築された等温 壁間(Case 1)および等温壁と断熱壁間(Case 2)の圧縮 性乱流に対するDNSデータを用いて,温度境界条件の 違いが圧縮性乱流の平均速度分布,平均温度分布,およ び壁面漸近挙動に及ぼす効果について検討する.

2. 計算手法および計算条件

空間的離散化手法として, 主流およびスパン方向(x1 および x3 方向)にはフーリエ・ガラーキン法, 壁面方向 (x2 方向)には次数8のB-スプライン・コロケーション 法がそれぞれ用いられている.時間進行法には3次精度 Runge-Kutta法が用いられている.

平行平板間の圧縮性乱流の数値計算に対する無次元パ ラメーターとして,レイノレズ数 Re = $\[\] M_m U_m H=^1 \]_{iw} = 3000,マッハ数 M = U_m= (°i 1) C_p T_{iw} = 1:5,プラン$ $トル数 Pr = 0:72, および比熱比°= 1:4 を与える.ここで <math>\[\] M_m, U_m, ^1, T, C_p, および H はそれぞれ,平均$ $密度,平均速度,粘性係数,温度,定圧比熱,および流路半幅である.また,添字 <math>\[\] m_w kH = 5 \] m_$

3. 計算結果とその考察

3.1 平均速度分布

壁面摩擦速度 $u_i(= \underbrace{i_{w}=h_w})$ により無次元 化された主流方向平均速度 $hu_1i^+(= hu_1i=u_i)$ は,壁座標 $y^+(= \underbrace{h_w}u_i y=1_w)$,無次元熱流束 $B_q[= q_w=(\underbrace{h_w}c_pu_i T_w)]$,壁面摩擦速度により定義さ れたマッハ数 $M_i[= u_i = \underbrace{(\circ_i 1)c_pT_w}]$,比熱比°,お よびプラントル数 Pr の5 個の無次元量を変数に持つ ことが次元解析により確認される². q_w , i_w , および y はそれぞれ壁面熱流束,壁面せん断応力, および参照 されている壁面からの距離である.h i は空間 (主流お よびスパン方向) および時間に関するアンサンブル平均 値である.添字 w は壁面上の諸量を意味する.本計算 では。および Pr は一定であるために Bq および M₂ が hu₁i⁺ に影響を与える変数となる.図1に hu₁i⁺ の分布 を示す.同図には比較のため Coleman ら³による等温壁 平行平板間の圧縮性乱流の計算結果および Moser ら⁴に よる Re₂ = 180 の平行平板間の非圧縮性乱流の計算結 果がそれぞれ および で示されている.hu₁i⁺ の値は y⁺ = 20 以上において, i Bq および M₂ が大きくなるに つれてそれぞれ大きくおよび小さくなる⁵.

図 2 に Van Driest 変換^{6,7}された平均速度 hu₁i⁺_{VD} (= $\mathbf{R}_{hu_1i^+} \mathbf{P}_{\overline{h!}i=k_w} dhu_1i^+$)の分布を示す.図1と図2との 比較により hu₁i⁺_{VD} は hu₁i⁺ と比べて B_q および M₂ に よる影響が小さいことが分かる⁵.

3.2 平均温度分布

平均温度 hT i = T_w に関しても平均速度 hu₁i⁺ と同様に, y⁺, B_q, M₂, °, および Pr を変数に持つことが次元解 析により確認される².本計算では[°]および Pr は一定で あるために B_q および M₂ が hT i⁺ に影響を与える変数と なる.図3に平均温度 hT i = T_w の分布を示す.平均温度 分布は i B_q および M₂ が大きくなるにつれてそれぞれ 大きくおよび小さくなることが分かる.

Fig. 2: Mean streamwise velocity with Van Direst transformation in wall units

Fig. 3: Mean temperature pro⁻les

3.3 壁面漸近挙動

変数 Å⁰(y⁺)を y⁺ = 0 まわりにテイラー級数展開する と次式を得る.なお[®] はアンサンブル平均値からのずれ を表す.

$$\begin{split} \hat{A}^{0}(y^{+}) &= \hat{A}^{0}(0) + y^{+} \frac{@\hat{A}^{0}}{@y^{+}} \Big]_{y^{\pm} = 0} \\ &+ \frac{y^{+2}}{2} \frac{@^{2}\hat{A}^{0}}{@y^{+2}} \Big]_{y^{+} = 0} + O(y^{+3}) \end{split} \tag{1}$$

壁面方向速度変動 $u_2^0(y^+)$ に関して,壁面速度すべり無し 条件 $u_2^0(0) = 0$ を式 (1) に適用することで壁面漸近挙動 $u_2^0(0) / O(y^+)$ が得られる.一方,非圧縮性乱流の場合に は,速度すべり無し条件に加えて連続の式から得られる壁 面境界条件, $@u_2^0(y^+)=@y^+j_{y^+=0} = 0$,が成立する.この ため,非圧縮性乱流における壁面方向速度変動の壁面漸近 挙動は $u_2^0(0)j_{incomp:} / O(y^{+2})$ となり,圧縮性乱流の場 合とは異なる.壁面方向乱流強度 u_{2rms}^+ (= $hu_2^0u_2^1i=u_i$) の分布を図 4 に示す.図より, u_{2rms}^+ は非圧縮性乱流の 場合には $O(y^{+2})$ で,圧縮性乱流の場合には温度境界条 件によらず $O(y^+)$ で壁面に漸近することが確認される.

等温壁側の温度変動 T⁰(y⁺)_{iso:} および断熱壁側の温度 変動 T⁰(y⁺)_{adia:} に関して,壁面境界条件 T⁰(0)_{iso:} = 0, および @T⁰(y⁺)_{adia:}=@y⁺j_{y⁺=0} = 0 をそれぞれ式 (1) に 適用することで,壁面漸近挙動 T⁰(y⁺)_{iso:} / O(y⁺) お よび T⁰(y⁺)_{adja:} / O(y⁺⁰) が得られる.温度の変動強度 T_{rms}=T_w(= <u>hT⁰T⁰1⁻1</u>=T_w)の分布を図 5 に示す.図より 温度の変動強度分布は等温壁側では O(y⁺),断熱壁側で は O(y⁺⁰) で壁面に漸近することが確認される.

4. まとめ

(1) 平均速度 hu_1i^+ および平均温度 hT i = T_w は i B_q および M₂ が大きくなるにつれてそれぞれ大きくおよび小

Fig. 4: The near wall variation of u_{2rms}^+

Fig. 5: The near wall variation of $T_{rms}=T_w$

さくなる.

(2) Van Driest 変換された平均速度分布 $hu_1 i_{VD}^+$ は $hu_1 i^+$ と比べて B_q および M₂ による影響が小さい.

(3) 壁面方向変動速度 u⁺_{2rms} は非圧縮性乱流の場合に は O(y⁺²) で,圧縮性乱流の場合には温度境界条件によ らず O(y⁺) で壁面に漸近する.

(4) 温度の変動強度 T_{rms}=T_w は等温壁側では O(y⁺), 断熱壁側では O(y⁺⁰) で壁面に漸近する.

謝辞

本研究に関し日本原子力研究所計算科学技術ソフトウェ ア研究開発(平成11年度~)の補助を受けている.また、 英国サザンプトン大学の Coleman 博士には参照データを ご提供頂いた.ここに記して感謝の意を表す.

参考文献

- 1. 森西洋平, 玉野真司, 中林功一, B スプライン法を 用いた圧縮性壁乱流のDNSアルゴリズム, 機論, B (2000), 投稿中.
- 2. Rotta, J.C., AGARD Rept. 281 (1960).
- Coleman,G.N., Kim,J. and Moser,R.D., J. Fluid Mech., 305(1995) 159-183.
- Moser, R.D., Kim, J., and Mansour, N.N., Phys. Fluids, 11(4)(1999) 943-945.
- 5. Huang, P.G. and Coleman, G.N., AIAA J., 32(10)(1994) 2110-2113.
- Van Driest, E.R., Journal of Aeronautical Science, 18(3) (1951) 145-160.
- 7. Bradshaw, P., Ann. Rev. Fluid Mech., 9(1977), 33-54.