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Direct Simulation of a Flow around an Airfoil
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A flow around a subsonic airfoil is investigated computationally. Two- and three-dimensional incompressible
Navier-Stokes equations are solved by finite-difference approximation without using any turbulence model. The
equations are transformed to a curvilinear coordinates system of O-type topology. Also multi-directional method
with third-order upwinding are employed. Computed lift coefficients agree with experimental ones very well.

1. INTRODUCTION

A flow around an airfoil is one of the most funda-
mental problems in aerodynamics. Many simulations
have been done but some important problems still re-
main unsolved. Those are very unsteady flows like an
impulsively started flow, flows at high angles of attack
and also transition to turbulence in the boundary layer
and computation using O-grid.

In this paper, those unsolved problems are at-
tacked by solving the time-dependent incompressible
Navier-Stokes equations by finite-difference approxima-
tion without using any turbulence model. Most suc-
cessful simulations of this kind at high Reynolds num-
bers are based on the third-order upwind formulation
(Kawamura and Kuwahara, 1984, Kuwahara, 1999).
An approach similar in philosophy but different in
method is adopted by Boris et. al. (1992). To in-
crease the accuracy, we have developed a new finite-
difference scheme named as multi-directional finite-
difference method (Suito, Ishii and Kuwahara 1995).
New results are presented, which will make the pos-
sibility of computational approach widen substantially.

2. COMPUTATIONAL METHOD

The governing equations are the unsteady incom-
pressible Navier-Stokes equations and the equation of
continuity as follows:

dive = 0 (1)
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ot

where u, p, t and Re denote the velocity vector, pressure,
time and the Reynolds number respectively. For high-
Reynolds-number flows, time-dependent computations
are required owing to the strong unsteadiness.

These equations are solved by a finite-difference
method. The numerical procedure is based on the pro-
jection method. The pressure field is obtained by solv-
ing the following Poisson equation:

1
. = — —A 2
+ u - gradu gradp + T (2)

n

Ap = —div(u - gradu) + 5 (3)

D = divu (4)

where n is the time step and 0t is the time increment.
D"+l is assumed to be zero, but D" is retained as a
corrective term.

A generalized coordinates system is employed, so that
enough grid points can be concentrated near the body
surface where the no-slip condition is imposed. In 3D
case, on the side walls no-slip condition is used.

For airfoil simulation, C-grid is usually used to avoid
the trailing edge singularity. To make C-grid is not easy
for high angles of attack, and this is another reason
of the difficulty to simulate the flow at high angles of
attack. Also C-grid needs unnecessarily concentrated
grid points in the near wake region beginning from the
trailing edge. This makes the computation unstable.
On the other hand O-grid is, in every sense, much
better if the computation converges. Figure 1 shows
the O-grid used here at 18 degrees attack angle.
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Figure 1 Computational grid

The multi-directional finite-difference method makes
the computation very stable even near the trailing edge.

All the spatial derivative terms are represented by the
central difference approximation except for the convec-
tion terms. For the convection terms, the third-order
upwind difference is used. This is the most important
point for high-Reynolds-number computations.

There is another important problem in high-order up-
wind schemes. That is, the accuracy decreases when the
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flow direction is not well parallel to one of the coordinate
lines. If we use generalized coordinate system, near the
boundary, the flow direction and one of the coordinate
lines are almost parallel, and this problem is not seri-
ous. However, in general, flow direction is not always
parallel to a coordinate line and the problem become
very important.

To overcome this problem we introduced the multi-
directional upwind method. This method is summarized
as follows;
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!

(a) system A

(b) system B

Figure 2 Grid for multi-directional scheme

When structured grid points are given, the black
points in Fig.2(a) are usually used to approximate the
derivatives at the central point ( system A ).

If we introduce the other 45 degrees-rotated local grid
points, the white ones in Fig.2(b), which can be used
to approximate the derivatives at the central point (
system B ).

In order to improve a derivative value at the central
point, we mix the derivative values calculated from both
systems ( A and B ) at a proper ratio. We adopt the
ratio A : B = C{3 : 1/3. Using this ratio, for example,
resulting finite-difference scheme for the Laplacian coin-
cides with the well-known 9-points formula with forth-
order accuracy. This method improves the rotational
invariance of the coordinate system. Then those flows
where flow direction is not parallel to the grid direction
are better simulated.

For all the spatial derivatives, the multi-directional
finite-difference method is used. This method has an-
other advantage. In MAC method, usually staggered
mesh is used to remove the unphysical oscillation of
the pressure. This oscillations is caused by the decou-
pling of the computed values within the nearest two
points. These values couple more tightly with the sec-
ond nearest points. This decoupling becomes less if
we use third-order upwind scheme because of the five-
point differencing, but there remains some. However,
if we use multi-directional finite-difference method, ev-
ery point becomes tightly coupled and the oscillation
disappears. Therefore, a non-staggered mesh system is
employed where the defined positions of velocity and
pressure are coincident.

For the temporal integration of the Navier-Stokes
equations, the Crank-Nicolson implicit scheme is uti-
lized. This scheme has second-order accuracy in time.
These equations and the Poisson equation are iteratively
solved at each time step by the successive overrelaxation
(SOR) coupled with a multigrid method.

3. COMPUTATIONAL RESULTS

Two- and three-dimensional flows around airfoil at
high angles of attack are computed based on the multi-
directional third order upwind scheme. Fully developed
2D flow is used as an initial condition for 3D compu-
tation to save computation time. In 2D computation,
it was found that agreement with experiment is per-
fect before the stall. However, beyond the stall angle,
there exits a definite discrepancy between experiment
and computation (Kuwahara and Komurasaki, 2000).

Therefore, we simulated this flow using a 3D code that
is developed with the same concept as the 2D code.

On the basis mentioned above, flows around an
NACAOQ012 airfoil are simulated at angles of attack,
from 0 to 24 degrees for 2D, and from 12 to 20 degrees
for 3D. The number of these grid points are 128x64
(coarse grid) and 128x256 (fine grid), and 128x64x16
respectively, Reynolds number is 1,000,000.

Figure 3 shows visualized results in 2D case of the
instantaneous flow field at angle attack from 14 to 20
degrees in fine grid. In this figure, the vorticity dis-
tribution, pressure contour-lines and stream lines are
expressed.

In Figs. 4-7, pressure contour lines on the airfoil sur-
face and the central plane and stream lines near the
surface are shown with time history of lift coefficients
at each angle attack for 3D computation.
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Figure 3 Instantaneous flow patterns in fine grid (128*256);
stream lines, vorticity field, pressure contours
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Figure 4 Time development at attack angle 14 degrees
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Figure 5 Time development at attack angle 16 degrees
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Figure 6 Time development at attack angle 18 degrees
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Figure 7 Time development at attack angle 20 degrees
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Figure 8 shows the drag, lift and moment coefficients
cd, cl, em in 2D and 3D computations. In case of 2D
computation, cl agrees perfectly well with the experi-
mental values up to the stall angle. The lift coefficients
cl become much larger than the experimental values be-
yond the stall angle. On the other hand, in case of 3D
computation, before the stall at the attack angle 15 de-
grees, the lift does not change much but after the stall at
attack angle 18 degrees, 3D computation quickly devel-
ops, and the lift decreases accordingly. The final results
agree with the experimental ones very well (Abbott and
Von Doenhoff, 1959).

Figure 9 shows drag, history of lift and moment co-
efficients from 2D to 3D computation at the stall angle
of 18 degrees. The left side of graph shows the result
of 2D computation and the other side, 3D computation
with using the result of 2D computation as the starting
condition.
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Figure 9 History of drag, lift, moment coefficients
at attack angle 18 degrees

4. VISUALIZATION

The amount of computed data is becoming bigger and
bigger, and without visualization system, understanding
of underlying flow mechanism is very difficult. What is
needed is a means of properly visualizing the computed
flow field. The key points are real-time visualization
and animation.

A flow simulation takes a large amount of CPU time,
therefore it is desirable to visualize it while computing
it. This saves a lot of time especially while debugging.
This should be called real-time visualization.

Moreover, still pictures are insufficient when the flow
becomes essentially unsteady as those at high Reynolds

numbers, since it is impossible to understand the tran-
sient flow in total only from a set of instantaneous flow
pictures. Visualization by animated graphics is a neces-
sity in this case. Only by using such a system it be-
comes possible to observe the essentially unsteady flow
field and to understand the fundamental flow mecha-
nism underlying it.

The visualization software used here are Clef2D
and Clef3Dvr developed by Institute of Computation
Fluid Dynamics, which satisfies the above requirements
(Kuzuu, Kaizaki, Kuwahara, 1997).

5. CONCLUSIONS

2D computation gives larger force coefficients beyond
the stall angle. 3D computation is required for 2D
flow with a large separation at high Reynolds number.
Coarse 3D computation gives better results than fine
2D computation for flows with large separation.
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