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Direct Simulation of a Flow around an Airfoil
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A ow around a subsonic airfoil is investigated computationally. Two- and three-dimensional incompressible

Navier-Stokes equations are solved by �nite-di�erence approximation without using any turbulence model. The

equations are transformed to a curvilinear coordinates system of O-type topology. Also multi-directional method

with third-order upwinding are employed. Computed lift coe�cients agree with experimental ones very well.

1. INTRODUCTION

A ow around an airfoil is one of the most funda-
mental problems in aerodynamics. Many simulations
have been done but some important problems still re-
main unsolved. Those are very unsteady ows like an
impulsively started ow, ows at high angles of attack
and also transition to turbulence in the boundary layer
and computation using O-grid.
In this paper, those unsolved problems are at-

tacked by solving the time-dependent incompressible
Navier-Stokes equations by �nite-di�erence approxima-
tion without using any turbulence model. Most suc-
cessful simulations of this kind at high Reynolds num-
bers are based on the third-order upwind formulation
(Kawamura and Kuwahara, 1984, Kuwahara, 1999).
An approach similar in philosophy but di�erent in
method is adopted by Boris et. al. (1992). To in-
crease the accuracy, we have developed a new �nite-
di�erence scheme named as multi-directional �nite-
di�erence method (Suito, Ishii and Kuwahara 1995).
New results are presented, which will make the pos-
sibility of computational approach widen substantially.

2. COMPUTATIONAL METHOD

The governing equations are the unsteady incom-
pressible Navier-Stokes equations and the equation of
continuity as follows:

divu = 0 (1)
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where u; p; t and Re denote the velocity vector, pressure,
time and the Reynolds number respectively. For high-
Reynolds-number ows, time-dependent computations
are required owing to the strong unsteadiness.
These equations are solved by a �nite-di�erence

method. The numerical procedure is based on the pro-
jection method. The pressure �eld is obtained by solv-
ing the following Poisson equation:

4p = �div(u � gradu) +
Dn

�t
(3)

D = divu (4)

where n is the time step and �t is the time increment.
Dn+1 is assumed to be zero, but Dn is retained as a
corrective term.
A generalized coordinates system is employed, so that

enough grid points can be concentrated near the body
surface where the no-slip condition is imposed. In 3D
case, on the side walls no-slip condition is used.

For airfoil simulation, C-grid is usually used to avoid
the trailing edge singularity. To make C-grid is not easy
for high angles of attack, and this is another reason
of the di�culty to simulate the ow at high angles of
attack. Also C-grid needs unnecessarily concentrated
grid points in the near wake region beginning from the
trailing edge. This makes the computation unstable.
On the other hand O-grid is, in every sense, much
better if the computation converges. Figure 1 shows
the O-grid used here at 18 degrees attack angle.

(a)

(b)

Figure 1 Computational grid

The multi-directional �nite-di�erence method makes
the computation very stable even near the trailing edge.
All the spatial derivative terms are represented by the

central di�erence approximation except for the convec-
tion terms. For the convection terms, the third-order
upwind di�erence is used. This is the most important
point for high-Reynolds-number computations.
There is another important problem in high-order up-

wind schemes. That is, the accuracy decreases when the
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ow direction is not well parallel to one of the coordinate
lines. If we use generalized coordinate system, near the
boundary, the ow direction and one of the coordinate
lines are almost parallel, and this problem is not seri-
ous. However, in general, ow direction is not always
parallel to a coordinate line and the problem become
very important.
To overcome this problem we introduced the multi-

directional upwind method. This method is summarized
as follows;

(a) system A (b) system B

Figure 2 Grid for multi-directional scheme

When structured grid points are given, the black
points in Fig.2(a) are usually used to approximate the
derivatives at the central point ( system A ).
If we introduce the other 45 degrees-rotated local grid

points, the white ones in Fig.2(b), which can be used
to approximate the derivatives at the central point (
system B ).
In order to improve a derivative value at the central

point, we mix the derivative values calculated from both
systems ( A and B ) at a proper ratio. We adopt the
ratio A : B = 2=3 : 1=3. Using this ratio, for example,
resulting �nite-di�erence scheme for the Laplacian coin-
cides with the well-known 9-points formula with forth-
order accuracy. This method improves the rotational
invariance of the coordinate system. Then those ows
where ow direction is not parallel to the grid direction
are better simulated.
For all the spatial derivatives, the multi-directional

�nite-di�erence method is used. This method has an-
other advantage. In MAC method, usually staggered
mesh is used to remove the unphysical oscillation of
the pressure. This oscillations is caused by the decou-
pling of the computed values within the nearest two
points. These values couple more tightly with the sec-
ond nearest points. This decoupling becomes less if
we use third-order upwind scheme because of the �ve-
point di�erencing, but there remains some. However,
if we use multi-directional �nite-di�erence method, ev-
ery point becomes tightly coupled and the oscillation
disappears. Therefore, a non-staggered mesh system is
employed where the de�ned positions of velocity and
pressure are coincident.
For the temporal integration of the Navier-Stokes

equations, the Crank-Nicolson implicit scheme is uti-
lized. This scheme has second-order accuracy in time.
These equations and the Poisson equation are iteratively
solved at each time step by the successive overrelaxation
(SOR) coupled with a multigrid method.

3. COMPUTATIONAL RESULTS

Two- and three-dimensional ows around airfoil at
high angles of attack are computed based on the multi-
directional third order upwind scheme. Fully developed
2D ow is used as an initial condition for 3D compu-
tation to save computation time. In 2D computation,
it was found that agreement with experiment is per-
fect before the stall. However, beyond the stall angle,
there exits a de�nite discrepancy between experiment
and computation (Kuwahara and Komurasaki, 2000).

Therefore, we simulated this ow using a 3D code that
is developed with the same concept as the 2D code.
On the basis mentioned above, ows around an

NACA0012 airfoil are simulated at angles of attack,
from 0 to 24 degrees for 2D, and from 12 to 20 degrees
for 3D. The number of these grid points are 128�64
(coarse grid) and 128�256 (�ne grid), and 128�64�16
respectively, Reynolds number is 1,000,000.
Figure 3 shows visualized results in 2D case of the

instantaneous ow �eld at angle attack from 14 to 20
degrees in �ne grid. In this �gure, the vorticity dis-
tribution, pressure contour-lines and stream lines are
expressed.
In Figs. 4-7, pressure contour lines on the airfoil sur-

face and the central plane and stream lines near the
surface are shown with time history of lift coe�cients
at each angle attack for 3D computation.

attack angle = 14 degrees

attack angle = 16 degrees

attack angle = 18 degrees

attack angle = 20 degrees

Figure 3 Instantaneous ow patterns in �ne grid (128*256);

stream lines, vorticity �eld, pressure contours
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Figure 4 Time development at attack angle 14 degrees
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Figure 5 Time development at attack angle 16 degrees
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Figure 6 Time development at attack angle 18 degrees
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Figure 7 Time development at attack angle 20 degrees
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Figure 8 shows the drag, lift and moment coe�cients
cd, cl, cm in 2D and 3D computations. In case of 2D
computation, cl agrees perfectly well with the experi-
mental values up to the stall angle. The lift coe�cients
cl become much larger than the experimental values be-
yond the stall angle. On the other hand, in case of 3D
computation, before the stall at the attack angle 15 de-
grees, the lift does not change much but after the stall at
attack angle 18 degrees, 3D computation quickly devel-
ops, and the lift decreases accordingly. The �nal results
agree with the experimental ones very well (Abbott and
Von Doenho�, 1959).
Figure 9 shows drag, history of lift and moment co-

e�cients from 2D to 3D computation at the stall angle
of 18 degrees. The left side of graph shows the result
of 2D computation and the other side, 3D computation
with using the result of 2D computation as the starting
condition.

Figure 8 Drag, lift, moment coe�cients

Figure 9 History of drag, lift, moment coe�cients

at attack angle 18 degrees

4. VISUALIZATION

The amount of computed data is becoming bigger and
bigger, and without visualization system, understanding
of underlying ow mechanism is very di�cult. What is
needed is a means of properly visualizing the computed
ow �eld. The key points are real-time visualization
and animation.
A ow simulation takes a large amount of CPU time,

therefore it is desirable to visualize it while computing
it. This saves a lot of time especially while debugging.
This should be called real-time visualization.
Moreover, still pictures are insu�cient when the ow

becomes essentially unsteady as those at high Reynolds

numbers, since it is impossible to understand the tran-
sient ow in total only from a set of instantaneous ow
pictures. Visualization by animated graphics is a neces-
sity in this case. Only by using such a system it be-
comes possible to observe the essentially unsteady ow
�eld and to understand the fundamental ow mecha-
nism underlying it.
The visualization software used here are Clef2D

and Clef3Dvr developed by Institute of Computation
Fluid Dynamics, which satis�es the above requirements
(Kuzuu, Kaizaki, Kuwahara, 1997).

5. CONCLUSIONS

2D computation gives larger force coe�cients beyond
the stall angle. 3D computation is required for 2D
ow with a large separation at high Reynolds number.
Coarse 3D computation gives better results than �ne
2D computation for ows with large separation.
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