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This paper describes the mathematical basis of an advanced vortex method of Biot-Savart law, its application results in mechanical 

engineering fields, development of large eddy simulation models in vortex methods and the subjects in future. It is pointed as one of the most 

attractive features of the vortex method that the numerical simulation using the method is considered to be a new and simple technique of large 

eddy simulation, because it consists of simple algorithm based on physics of flow and it provides a completely grid-free Lagrangian 

calculation. Typical results of  numerical investigations of the unsteady flows around an airfoil oscillating in a uniform flow, complex flows 

through a centrifugal impeller rotating in a volute casing and others are explained.  

 
1. Introduction 

Although the recent progress of computational fluid dynamics is quite 

rapid, the numerical analysis of a higher Reynolds number flow seems still 

not so easy, from the viewpoint of engineering applications. The 

applicability of the conventional turbulence models of time-mean type 

seems questionable as far as unsteady separated flows are concerned. And 

the Large Eddy Simulation of Eulerian type inevitably meets crucial 

difficulties in its application to flows of higher Reynolds number, because 

the scheme essentially needs reasonably fine grids according to the 

magnitude of Reynolds number. 

     On the other hand, the vortex methods have been developed and 

applied for analysis of complex, unsteady and vortical flows in relation to 

problems in a wide range of industries, because they consist of simple 

algorithm based on physics of flow. Leonard (1980)[1] summarized the 

basic algorithm and examples of its applications. Sarpkaya (1989)[2] 

presented a comprehensive review of various vortex methods based on 

Lagrangian or mixed Lagrangian-Eulerian schemes, the Biot-Savart law or 

the Vortex in Cell methods. Kamemoto (1995)[3] summarized  the 

mathematical basis of the Biot-Savart law methods.  

     Recently, the first International Conference on Vortex Methods has 

been held in 1999, in Kobe, Japan, in which a review of vortex element 

methods by Lewis[4], a proposal of a hybrid vortex method by Graham et 

al. [5], a report on vortex method analysis of turbulent flows by Bernard[6], 

simulation of particulate flows using a Vortex in Cell method by Walther et 

al.[7], a convergence study for the vortex method with boundaries by 

Ying[8], numerical prediction of rotor tip-vortex roll-up in axial flight by a 

time marching free-wake method by Lee[9], achievements and challenges 

by a Vortex in Cell method by Cottet[10] and other interesting works related 

with different kinds of vortex methods were presented. In this conference, 

Kamemoto and Miyasaka (1999)[11] proposed a vortex and heat elements 

method and showed application results of analysis of unsteady and 

forced-convective heat transfer around a circular cylinder in a uniform 

flow. After the conference, an interesting book consisting of selected 

papers of the conference has been published in 2000 [12] .  

     On the other hand, as well as many finite difference methods, it is a 

crucial point in vortex methods that the number of vortex elements should 

be increased when higher resolution of turbulence structures is required, 

and then the computational time increases rapidly. Recently, in order to 

overcome the crucial point, some of leading researchers examined spatial 

averaging models of turbulence in high Reynolds number flows for 

Lagrandian large eddy simulation. Leonard and Chua (1989)[13] proposed 

application of the Smagorinsky model in simulations of interaction 

between interlocked vortex rings and interaction between two colliding 

vortex rings. Mansfield et al.  (1998)[14] (1999)[15] proposed a dynamic 

eddy viscosity model of subfilter-scale stresses for Lagrangian vortex 

element methods and applied it to simulation of collision of coaxial vortex 

rings. Kiya et al. (1999)[16] carried out simulation of an impulsively started 

round jets by a 3-d vortex method using the Smagorinsky model. Saltara et 

al. (1998)[17] simulated vortex shedding from an oscillating circular 

cylinder with use of turbulence modeling of Smagorinsky type  in a 

Vortex in Cell method. 

     In this paper, attractive characteristics of the Biot-Savart law vortex 

methods developed and examined up to this time are described, explaining 

the mathematical background and showing typical results of numerical 

simulation of two and three-dimensional unsteady separated flows. Then, 

introducing the new movement of turbulence modeling for Lagrangian 

vortex methods, the subjects of the vortex methods which should be solved 

as a tool of the Lagrangian large eddy simulation are discussed. 

 

2 Algorithms of Vortex Methods based on Biot-Savart Law  

2.1  Mathematical Basis 
Since the vortex methods have been developed for numerical analysis of 



 

                                                       - 2 -                            Copyright © 2000 by JSCFD 

incompressible and unsteady flow, their governing equations are thought to 

be based on the Navier-Stokes equation and the continuity equation for 

incompressible flow which are written in vector form as follows.  
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Alternative expression of the governing equations of viscous and 

incompressible flow gives the vorticity transport equation and pressure 

Poisson equation which are derived from the rotation and divergence of 

Navier-Stokes equations, respectively 
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where u is a velocity vector. The vorticity ω is defined as 

                   urot=ω                        (5) 

Lagrangian expression for the vorticity transport equation (3) is given by 
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When a two-dimensional flow is dealt with, the first term of the right hand 

side in equation (6) disappears and so the two-dimensional vorticity 

transport equation is simply expressed as 

                 ω
ω 2∇= ν
td

d                          (7) 

     In the Biot-Savart law methods, the vorticity transport equation (6) is 

numerically solved by the operator-splitting scheme of Chorin (1973) [18]. 

If the vorticity of a fluid particle at time t is written as ω (t), we obtain an 

approximate expression of the change of vorticity through convection and 

diffusion during a small time interval dt as follows. 

     dtdtgradtdtt ⋅∇+⋅⋅+=+ ωωωω 2νu)()()(   (8) 

In equation (8), the second term in the right hand side is based on the 

three-dimensional stretching of vorticity, which always becomes zero for 

two-dimensional flow, and the third term is the rate of viscous diffusion of 

vorticity. If the Reynolds number of the flow is sufficiently large, the 

convection term is considered much larger than the diffusion term, and 

thus, the third term in equation (8) may be neglected in the computation. 

Furthermore, if the high Reynolds number flow is two-dimensional, 

equation (8) is approximated by a simple equation like ω (t+dt) = ω (t) = 

constant. Therefore, if we take a small sectional area ds for the fluid 

particle and the vorticity is assumed constant in this area, the 

two-dimensional fluid particle is thought a free vortex element which 

transports a constant circulation  Γ= ω ds.  

     On the other hand, the motion of the fluid particle at a location r is 

represented by a Lagrangian form of a simple differential equation. 
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Then, the trajectory of the fluid particle over a time step dt is 

approximately computed from the Adams-Bashforth method as follows. 
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2.2 Generalized Biot-Savart Law  

   As explained by Wu and Thompson (1973)[32], the Biot-Savart law can 

be derived from integration of the vorticity definition equation (5) as 
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Here, subscript “0” denotes variable, differentiation and integration at a 

location r0, and n0 denotes the normal unit vector at a point on a boundary 

surface S.  And G is the fundamental solution of the scalar Laplace 

equation with the delta function δ (r-r0) in the right hand side, which is 

written as 
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here,  R = r - r0 ,  R = |R| = | r - r0 |. 

     In equation (11), the inner product, n0 � u0 and the outer product 

n0×u0 stand for respectively normal and tangential velocity components on 

the boundary surface, and they respectively correspond to source and 

vortex distributions on the surface.   

Therefore, it is mathematically understood that a velocity field of viscous 

and incompressible flow is arrived at the field integration concerning 

vorticity distributions in the flow field and the surface integration 

concerning source and vortex distributions around the boundary surface as 

shown in Figure 1.  

 

2.3 Calculation of Pressure 

Instead of the finite difference calculation of the pressure Poisson equation 

represented by equation (4), the pressure in the flow field is calculated 

from the integration equation formulated by Uhlman (1992)[20] as follows. 
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Here,β is β= 1 inside the flow and β= 1/2 on the boundary S. G is the 

fundamental solution given by equation (12) or (13), and H is the Bernoulli 

function defined as  
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here, u =│u│. 

 

2.4 Introduction of Nascent Vortex Elements 

The vorticity field near the solid surface must be represented by proper 
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distributions of vorticity layers and discrete vortex elements so as to satisfy   

the non-slip condition on the surface. In the advanced method developed 

by the group of the present authors,  a thin vorticity layer with thickness hi  

is considered along the body surface and the surface of outer boundary of 

the thin vorticity layer is discretized by a number of vortex sheet panels as 

shown in Figure 2. 

If the flow is considered to be two-dimensional for convenience, and a 

linear distribution of velocity in the thin vorticity layer is assumed, the 

normal convective velocity Vc on a panel can be expressed using the 

relation of continuity of flow and the non-slip condition on the solid 

surface for the element of the vorticity layer [abcd] as  
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here, si, hi and ui respectively denote the panel length, vorticity layer 

thickness and tangential velocity at a panel edge. Using the relation 

between the normal and tangential velocities for each panel expressed by 

equation (16), the strength of the vortex sheet and/or source of the panel for 

the following step can be calculated numerically from equation (11).  

    On the other hand, the vorticity of the thin shear layer diffuses 

through the panel into the flow field. In order to consider this vorticity 

diffusion, a diffusion velocity is employed in the same manner as the 

vorticity layer spreading method proposed by Kamemoto (1995)[3] . The 

vorticity layer spreading method is based on the viscous diffusion of the 

vorticity in the shear layer developing over a suddenly accelerated plate 

wall. In this case, the displacement thickness of the vorticity layer (δ ) 

diffuses with the progress of time as δ = 1.136(νT)1/2 from the solid surface 

at a time T. Differentiating  δ  by T and substituting the distance of a 

panel from the solid surface hi into δ , we obtain the diffusion velocity Vd at 

the panel as follows. 
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here, ν is kinematic viscosity of the fluid. If the value of ( Vc+Vd ) 

becomes positive, a nascent vortex element is introduced in the flow field, 

where the thickness and vorticity of the element are given as follows. 
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Here, Γ is  the circulation originally involved in the element of the 

vorticity layer [abcd], and A and Avor are the areas of the vorticity layer 

element and the nascent vortex element. 

     In case of three-dimensional flow calculation, a three-dimensional 

nascent vortex element of a rectangular parallelepiped is introduced in the 

same manner as the two-dimensional case, through each vortex sheet panel 

of the outer boundary of a thin vorticity layer. The details of treatments 

have been  explained in the paper by Ojima and Kamemoto (2000)[21].  

As shown in Figure 3,  if a linear distribution of velocity in the thin 

vorticity layer is assumed, the normal convective velocity Vc on a panel 

can be expressed by using the relation of continuity of flow and non-slip 

condition on the solid surface for the element of the vorticity layer  
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here,  si i siu = ⋅u n  and i iS h l∆ ∆= ⋅  

Where, ∆Sp , ui and nsi respectively denote the panel area, the velocity 

vector and the normal vector on the side sectional planes of the element of 

the vorticity layer.  Using the normal velocity for each panel expressed by 

equation (20), the intensity of the vortex sheet and/or source of the panel 

for the following step can be calculated numerically from equation (11).    

     In the same manner as the two-dimensional case, the viscous 

diffusion velocity at the panel is given as 

                  
h

c
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here, ν is kinematic viscosity of the fluid. If Vc+Vd becomes positive, a 

nascent vortex element is introduced into the flow field, where the 

thickness and vorticity of the element are given from the relation of the 

vortex strength conservation as follows. 

     V
vor

vor

dv

V V
=

+
∫ ω

ω                (22) 

      dtVVh dcvor ⋅+= )(                        (23)           

      vor p vorV S h∆= ⋅                         (24) 

Here, ω is the vorticity originally involved in the element of the vorticity 

layer, V and Vvor are the volume of the vorticity element and the nascent 

vortex element. Every vortex element is introduced at the distance of 

0.5hvor from the panel as a vortex plate. 

     It will be noteworthy that as a linear distribution of velocity is 

assumed in the thin vorticity layer, the shearing stress on the wall surface  

is evaluated approximately from following equation as far as the thickness 

of the vorticity layer is sufficiently thin.  
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2.5 Replacement with Equivalent Vortex Blobs 

For simplification of numerical treatments, every nascent vortex element 

which is far from the solid surface, can be replaced with an equivalent 

discrete vortex. Either in two-dimensional or in three dimensional flow, the 

discrete vortex element is modelled by a vortex blob which has its own 

smoothed vorticity distribution and a core radius, which spreads according 

to the viscous diffusion expressed by the third term in the right hand side of 

equation (8) as explained by Kamemoto (1995)[3]. In the vortex method 

used by the group of the present authors, every nascent vortex element 

which moves beyond a boundary at the distance of four times hi from the 

solid surface, is replaced with an equivalent, circular (2-D) or spherical 

(3-D) vortex blob of the core spreading model. 

    When a two-dimensional flow is dealt with, the total circulation and 

the sectional area of the blob core are determined to be the same as those of 

the rectangular nascent vortex element. As explained by Leonard (1980)[1], 

if a vortex blob has a core of radius εi and total circulation Γi , a 
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Gaussian distribution of vorticity around the center of the blob is given as 
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here ri denotes a position of the center of the blob. As explained by 

Kamemoto (1995) [3], the spreading of the core radiusεi according to the 

viscous diffusion expressed by equation (7) is represented as  
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     When a three-dimensional flow is treated, a nascent  vortex  

element of a rectangular parallelepiped is replaced by an equivalent vortex 

blob with a spherically symmetric distribution of vorticity which was 

proposed by Winckelmans and Leonard (1988) [22] and modified by 

Nakanishi and Kamemoto (1992)[23]. The details of treatments are 

explained in the paper by Ojima and Kamemoto (2000)[21]. A vortex blob 

is a spherical model with a radially symmetric distribution of vorticity.  

Once the i-th vortex blob is given in a flow field by the position ri=(rx, ry, 

rz), its vorticity ωi=(ωx, ωy, ωz) and its core radius εi, the vorticity 

distribution around the vortex blob is represented by following equations. 

           3( ) (| | / )i i i ip dvι ι ε ε −= −r r rω ω                (28) 
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Here, p(ξ) is smoothing function proposed by Winckelmans & Leonard 

(1988) [6]   

    On the other hand, the evolution of vorticity is calculated by equation 

(8) with three-dimensional core spreading method modified by Nakanishi 

& Kamemoto (1992)[23].  In this method, the stretch term and diffusion 

term of equation (8) are separately considered.  The change of core radius 

due to the stretching is calculated from following equations. 
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Here, ε and l are the core radius and the length of the vortex blob model as 

shown in Figure 4.  The viscous term of equation (8) is expressed by the 

core spreading method.  The core spreading method is based on the 

Navier-Stokes equation for viscous diffusion of an isolated 

two-dimensional vortex filament in a rest fluid, and as well as equation 

(27), the rate of core spreading is represented as follows. 
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Taking account of two factors expressed as equations (32) and (33), 

characteristic values of the elongated blob element are obtained from the 

following equations.   
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And then,, the elongated element is replaced into a new and spherical 

vortex blob which has the volume equivalent to the elongated one. 

 

2.6  Numerical Procedure. 

If all of the vorticity layers existing in the flow field at any time are 

represented with discrete vortex distributions, the strengths of the source 

and/or vortex distributed along the boundary surface are numerically 

calculated so as to satisfy the boundary conditions of normal or tangential 

velocity components on it, by applying the popular scheme of the panel 

method to the integration equation (11). Once the source and/or vortex 

distributions are determined in the right hand side of equation (11), not 

only a flow velocity at an arbitrary position in the flow field but also the 

convective velocity of each discrete vortex can be calculated. Substituting 

the velocities into equations (8) and (10), the vorticity transport  and 

trajectory of each discrete vortex over the time step are numerically 

investigated, which provide new distributions of discrete vortices 

corresponding to the vorticity layers transported during the time step.      

     Consequently, the iteration of the above procedure provides the 

basic scheme of the grid-free Lagrangian simulation of unsteady, 

incompressible and viscous flow, making use of the Biot-Savart law vortex 

methods.  

 

2.7 Application to Forced Convective Heat Transfer 

When a forced heat convection in a flow of a high Reynolds number and a 

not-so-small Prandtl number is assumed, we can ignore the effects of 

natural heat convection. Then, the energy equation for forced convective 

heat transfer is expressed as 

             ( ) TTgrad
t
T 2∇=⋅+

∂
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where T is temperature and α is the thermal diffusivity. Lagrangian 

expression for the energy equation (37) are given by 

               T
dt
dT 2∇= α                        (38) 

It is clear that the energy equation (38) is of the similar form to the vorticity 

transport equation (6). When a two-dimensional flow is dealt with, the 

vorticity transport equation is simply expressed by equation (7). Therefore, 

the form of equation (38) becomes completely the same as  equation (7). 

This fact seems to suggest that the energy equation (38) can be solved in an 

analogous way, with nascent temperature elements, in place of vortex 

elements using a time splitting scheme. 

    In the vortex element method developed by the group of the present 

authors, the viscous diffusion expressed by equation (7) is approximately 

taken into account by the core spreading method. Therefore, in the present 

method, the thermal diffusion expressed by equation (38) is similarly 

considered by introducing a thermal core to a discrete heat element which 

spreads with the increase of time, and as same as that of a vortex element, 
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the trajectory of each heat element in flow is represented by equation (9). 

     The details of teatments in the calculation of forced convective heat 

transfer are explained in the paper by Kamemoto and Miyasaka (1999)[11]. 

 

3 The Way to Lagrangian Large Eddy Simulation 

3.1 Turbulence Models for the Vortex Methods  

When treating high Reynolds number flows,  one can perform a large 

eddy simulation by modeling the effect of the small or subgrid-scale eddies 

on the larger scales.  In their study on three-dimensional interactions of 

vortex tubes, Leonard and Chua  (1989)[13] proposed and used a nonlinear 

core-spreading algorithm, which is a pioneering work of modeling 

turbulence for a vortex method in the spirit of large eddy simulation. To 

accomplish this in a vortex method, they introduced a subgrid-scale 

viscosity νSGS and implemented the following nonlinear core-spreading 

algorithm for expression of changing rate of core radius εi,  
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where ω = |ω| , and the second term on the right-hand side is the inviscid 

change in core size due to stretching of vorticity and the subgrid-scale 

viscosity depends on the local vorticity stretching rate (1/ω) (dω / dt), as 

follows. 
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where C is a constant. They have pointed out that the expression (40) for 

�SGS  is very similar in form to the so-called Smagorinsky model used in 

large eddy simulation with finite difference methods and given by  
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where C’ is a constant and ∆ is the scale of grid. Using the nonlinear 

core-spreading scheme in simulations of interaction between two 

interlocked vortex rings and interaction between two colliding vortex rings, 

Leonard and Chua succeeded in observing the dynamics of the space 

curves of the vortex tubes, the development of complex internal structure 

in the vortex cores and the reconnection of vortex lines. 

     Mansfield et al. (1998)[14] (1999) [15] developed a dynamic eddy 

viscosity model of the subfilter-scale stresses for Lagrangian vortex 

element  methods. Their LES scheme is based on the filtered vorticity 

transport equation which is expressed as 
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In this equation, Rij is the subfilter-scale (SFS) vorticity stress, which 

accounts for the effect of unresolved velocity and vorticity fluctuations and 

is expressed as 

          ( ) ( )jijijijiij ωωωω uuuuR −−−≡            (43) 

where bars are used to denote spatially filtered quantities. In order to close 

the filtered vorticity transport equation (42), they provided a model for the 

vorticity stress R based on the eddy diffusivity model  
               ( )ω∇⋅−∇=⋅∇ TνR                     (44) 

where the eddy diffusivity is expressed as 

                   SCrT
22∆ν =                          (45) 

here, the modulus of the filtered strain-rate tensor is defined as |S| = 

(2SmnSmn)
1/2. In equation (45), ∆ is the filter size which is related to the core 

size of the vortex elements used to represent the vorticity field, and Cr  is a 

model constant which is determined locally in the calculations according 

to filtering operations. Applying the LES model to simulation of the 

collision of coaxial vortex rings, Mansfield et al (1999)[29] showed that the 

Lagrangian LES scheme captures several experimentally observed 

features of the ring collisions, including turbulent breakdown into 

small-scale structures and the generation of small-scale radially 

propagating vortex rings. 

Recently, Kiya et al (1999) [16] modified the nonlinear 

core-spreading algorithm proposed by Leonard and Chua and examined 

the effect of the subgrid-scale eddies on the flow of larger scales. In the 

original model of Leonard and Chua, as shown in equation (40), if dω 

/dt<0,  the subgrid-scale viscosity νSGS becomes νSGS = 0.  Kiya et al., 

however, did not use this procedure, but they simply applied the sub-grid 

scale viscosity based on the Smagorinsky sub-grid scale viscosity, which is 

expressed as    
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d
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where ∆ is replaced by the core radius εi of a vortex element and the value 

of the model constant c = 0.17 , which is recommended for free turbulent 

shear flows in the Smagorinsky model, was employed in their study. They 

examined three models of core spreading based on viscous diffusion, 

turbulent eddies and both effects, which are respectively expressed as 
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Applying each models to an impulsively started round jet forced by two 

helical disturbance rotating in the counter directions, Kiya et al. compared 

vortical structures in the jet among the models, and concluded that the 

simulation of the forced round jet by the turbulence model seems to 

generate turbulent vortical structures although its validation based on DNS 

or experiments is left as a study in the future.  

 

3.2 On Challenge to Modeling of Wall Turbulence. 

So far, all of the turbulence models described above have been applied 

only for free turbulence. Saltara et al. (1998)[17] simulated vortex shedding 

from an oscillating circular cylinder with use of turbulence modeling in a 

vortex in cell method. However, any challenging works on modeling of 

wall turbulence for the Lagrangian vortex methods have not been reported, 

yet.  

     As the algorithms of the advanced vortex method explained in the 
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section 2 are very simple, it seems not so difficult to take account of the 

effects of subcore (subfilter) eddies on the flow represented with discrete 

vortices. Therefore, it will be very interesting to test the SGS models 

proposed for free turbulence in simulation of a high Reynolds number flow 

around a bluff body. 

 

4 Application Examples 

 

For investigation of unsteady and vortical flows, the Biot-Savart law 

vortex methods have so attractive advantages that grid generation in a flow 

field is not necessary and any conventional turbulence models of 

time-mean type are not used. Therefore, the vortex methods have been 

applied for analyses of unsteady separated flows related with various 

problems in engineering fields. The followings are typical examples of 

application of the advanced vortex method by the group of the present 

author. 

  

4.1 Unsteady Flow past an Oscillating Airfoil 

In order to examine the effectiveness of the present method, the 

two-dimensional unsteady separated flow past a sinusoidally oscillating 

NACA 0012 airfoil was computed by Etoh et al. (1997) [24].  Figure 5 

shows instantaneous flow patterns at the mean angle of attack α = 15.0o 

during pitching up and down motion, when the airfoil was oscillated in 

pitch angle about the quarter chord point as α = 15.0o +5.0�sin Ω T  at the 

Reynolds number Re=5.0 × 105, where T is the non-dimensional time 

based on the cord length and the velocity of uniform flow, and the 

non-dimensional time step was dT=0.026 and Ω was given as Ω =1.0.  It 

is clearly shown that in the case of pitching down motion, the large 

dynamic stall vortex and trailing edge vortex still exit around the airfoil, 

whereas in the case of pitching up motion, the dynamic stall is developing 

but the both vortices are not so large, yet. 

 

4.2 Unsteady Flows around Three-dimensional Bluff Bodies  

Recently, in order to confirm the applicability of an advanced vortex 

method to a three-dimensional unsteady separated flow, the developments 

of vortical wakes behind a sphere and a prolate spheroid after their 

impulsive start at a constant speed in a rest fluid were simulated by Ojima 

and Kamemoto (2000) [21]. In their calculation, both a sphere and the 

prolate spheroid were represented by 360 source and vortex panels.  

    Figure 6 shows calculated instantaneous flow patterns represented by 

discrete vortices and isosurfaces of streamwise vorticity behind the sphere 

at a non-dimensional time tU/D=10.25 elapsed after the start at a Reynolds 

number Re=300, where U and D denote the speed and the diameter of the 

sphere  respectively,  and  the time step size was dtU/D =0.05. In this 

figure, three-dimensional vortex structures are clearly shown in the 

separated flow, and the development  of spiral structure of wake and the 

interesting phenomenon like the break-down of hear pin vortices into 

turbulence vortices of small scale can be observed in the wake. 

Figure 7 shows instantaneous flow patterns behind the prolate spheroid of 

the axis ratio b/a=1/3 represented by discrete vortices and isosurface of the 

streamwise vorticity for tU/D=10.25, attack-angle α=0.0o and 

Re=Ua/ν=1,000, where a and b denote the length of major and minor axes 

respectively, and the time step size was  dtU/D =0.075. It is seen that the 

typical hairpin-shaped structure begins to be periodically formed behind 

the spheroid in the similar manner to the wake of a sphere as shown in 

Figure 6.  

     

4.3 Unsteady Flow in a Centrifugal Pump 

The advanced vortex method has been applied to such an engineering 

purpose as simulation of unsteady and complex flow through a 

two-dimensional centrifugal impeller by Zhu et al. (1998)[25]. Figure 8 

shows an instantaneous pattern of flow through the impeller in the case of 

partial discharge ( 60% of the design flow rate ) at a non-dimensional time 

T=2.0 after the start of rotation at a constant speed at the Reynolds number 

Re=105, where the time step size was dT=0.01 and the non-dimensional 

value were based on the inlet meridian velocity at the design condition and 

the outer diameter of the impeller. It is clearly demonstrated that the flow 

becomes completely non-axi-symmetrical and some of blade-to-blade 

passages seem to be blocked with separation bubbles.  

 

4.4 Rotor-Stator Interaction in a Diffuser Pump 

As the flow-unsteadiness generated by rotor-stator interaction in 

turbomachinery usually causes serious problems concerning vibration and 

noise, development of easy-to-handle methods have been expected to 

simulate the real unsteady-interaction without introducing either a 

sliding-surface between the rotating and stationary frames or turbulence 

models of time-mean type. In order to examine the applicability of the 

advanced vortex method for those purposes, the unsteady and interactive 

flows between a two-dimensional centrifugal impeller and a surrounding 

vaned diffuser were simulated by Zhu and Kamemoto (1999)[26]. In the 

calculation, each vane of the impeller and diffuser was represented 50 

vortex panels, and the time step size and Reynolds number were taken as 

dt=T/150 and Re=105  respectively, here T is the period of impeller 

revolution. Figure 9 shows examples of calculated instantaneous pressure 

distribution at a time and variation of static pressure with time at a point 

close to the suction-side of leading edge of a diffuser vane compared with 

experimental data. [29]. It is found that there exist considerable differences 

of static pressure in the flow field around the diffuser inlet corresponding to 

the relative position between impeller and diffuser vanes. And it is one of 

the most interesting points that variation of the calculated pressure 

coefficient Cp is in very good agreement with experimental one in its 

absolute value.   

 

4.5 Simulation of Three-dimensional Unsteady Flows through a 

Wind Turbine 

In relation with further development of promising clean energy resources, 

investigations of unsteady and three-dimensional characteristics of flows 

around wind turbines are required. Especially, for conditions out of the 

conventional design, it is necessary to predict the features of complex 

vortical flows to design suitable operation procedures. Corresponding to 

those requirements, simulation of three-dimensional and unsteady flows 

through a horizontal-axis wind turbine (HAWT) of single blade was 
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performed applying the advanced vortex method by Ojima and 

Kamemoto (2000)[27]. In the calculation, the blade was divided into 572 

source and vortex panels (span wise: 22, sectional blade element: 26), and 

the time step size and Reynolds number were taken as dtV/R=2π/(200Ω) 

and Re=VR/ν=1.0×106, where V, R andΩ denote the blade tip velocity, 

the rotational radius of the blade tip and angular velocity. Figure 10 shows 

calculated instantaneous flow pattern represented by discrete vortices at tip 

speed ratio λ=V/U=8.0 after three times of rotor revolution, where U is a 

wind velocity. At the initial stage of the flow, complex wake structure is 

formed behind the rotor blade due to  interaction among starting vortices 

shed from the trailing edge and the longitudinal vorticesshed from the tip 

and root of the blade. And it is observed that as time goes on, the starting 

vortices flow downstream and the longitudinal vortices tend to have 

dominant role in the flow field. Figure 11 shows instantaneous pressure 

distributions on the blade surfaces after three rotor revolutions forλ=8.0. It 

is seen that a lower pressure region develops near the tip and leading edges 

on the suction side of the blade. 

 

4.6  Numerical Fish 

Recently, in relation to conservation of fish resources, development of 

numerical prediction technique for confirmation of safe swimming of 

fishes through a hydraulic turbine of a power station. For this purpose, the 

group of the present authors[28] have started to apply their vortex methods 

to numerical simulation of fish swimming. Figure 12 (a) shows shows the 

aspect of swimming of a two-dimensional trout obtained from a 2-D 

calculation. Blue vortex elements means clockwise rotation and red 

elements are counter-clockwise vortices. We can find that there is no 

separation region around  the fish and alternative vortex rows are formed 

behind the fish. Figure 12 (b) shows the instantaneous presuure distribution 

on the skin of a trout obtained from 3-D calculation, here, the red skin 

shows a higher pressure region and blue one is a lower pressure region.   

 

5  Conclusions 

 

In this paper, the mathematical basis of the methods, calculation algorithms 

and an advanced vortex method developed by the group of the present 

author were explained in the section 2.  

     In the section 3, recent pioneering works on LES modeling by 

leading researchers were reviewed, and necessity of development of wall 

turbulence models was described 

     In the section 4,  from the various examples of application, it was 

confirmed that  the vortex methods standing on the Biot-Savart law are 

consisting of simple algorithms based on physics of flow and they provide 

completely grid-free Lagrangian calculation. 

     Finally, it may be possible to say that the advanced vortex  methods 

are to yield a promising way to a grid-free Lagrangian Large Eddy 

Simulation of unsteady and complex flows of higher Reynolds numbers. 
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            Figure 1:   Flow field involving vorticity region. 
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        Figure 2:  Thin vorticity layer and nascent vortex element 

 

 

 

 

   Figure 3:  Introduction of three-dimensional nascent vortex element.  
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Figure 4:     Mechanism of three-dimensional core spreading method   

for a vortex blob.  

 

 

 

 

 

 

 

(a) Pitching down at α = 15.0o ( T = 11.0 ) 

 

 

 

 

 

 

 

             (b) Pitching up at α = 15.0o ( T = 14.1 ) 

Figure5:   Instantaneous flow patterns around an oscillating airfoil 

NACA 0012 .( α = 15.0o +5.0�sin Ω T , Re = 5.0 × 105) 

 

 

 

 

 

 

 

 

                     (a) Flow pattern. 

 

 

 

 

 

  

 

(b) Isosurfaces of streamwise vorticity. 

Figure6:  Instantaneous flow patterns represented by discrete vortices and  

isosurfaces of streamwise vorticity behind a sphere (tU/D=10.25, Re=300).  

 

 

 

 

 

 

                           (a) Flow pattern. 

 

 

 

 

 

 

                  (b) Isosurfaces of streamwise vorticity. 

Figure 7:  Instantaneous flow patterns represented by discrete vortices  

and isosurfaces of streamwise vorticity behind a prolate spheroid 

(tU/D=10.25, α=0.0o, Re=1,000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Flow pattern represented by discrete vortices. 

(b)  

 

 

 

 

 

 

 

 

 

 

                      (b) Velocity vectors. 

 

Figure 8:  Two-dimensional unsteady flow in a centrifugal pump at 60% 

of the design flow rate. 
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              (a) Instantaneous pressure distribution 

 

 

 

 

 

 

 

 

 

 

 

(b) Variation of static pressure with time at a point close to the suction-side 

of leading edge of a diffuser vane 

 

Figure 9:   Interactive pressure distribution around rotor and stator vanes 

in a diffuser pump (100%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure10:  Instantaneous flow pattern behind a wind turbine after three 

times of rotor revolution at tip speed ratio λ=8.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Instantaneous pressure distributions on 

the blade surfaces after three rotor revolutions for

λ=8.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

               (a)  Flow around a swimming trout (2-D). 

 

 

 

 

 

 

 

 

 

 

 

     (b) Instantaneous pressure distribution around a trout (3-D). 

     

             Figure 12:  Flow around a numerical fish. 
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