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This paper describes the mathematicd basis of an advanced vortex method of Biot-Savart law, its gpplication results in mechanica
engineering fidds, development of large eddy smulation modesin vortex methods and the subjectsin future. It is pointed as one of the most
attractive festures of the vortex method thet the numerical Smulation using the method is conddered to be anew and smpletechnique of large
eddy amulaion, because it condgs of smple dgorithm basad on phydcs of flow and it provides a completdy gridfree Lagrangian
cdculaion. Typicd readitsof numerica investigations of the ungteedy flows around an airfoil ostillating in a uniform flow, complex flows
through a centrifugal impeller rotating in avolute casing and others are explained.

1. Introduction

Although the recent progress of computationa fluid dynamics is quite
rapid, the numerica andysis of ahigher Reynolds number flow seems il
not 0 essy, from the viewpoint of enginesring agpplications. The
applicability of the conventiond turbulence modes of time-mean type
seems questionable as far as undteady separated flows are concerned. And
the Large Eddy Simulation of Eulerian type inevitably meets crucid
difficultiesin its goplication to flows of higher Reynolds number, because
the scheme essentidly needs reesonebly fine grids according to the
meagnitude of Reynolds number.

On the other hand, the vortex methods have been developed and
applied for andlysis of complex, ungteady and vorticd flowsin rdation to
problems in a wide range of industries, because they condst of smple
dgorithm based on physics of flow. Leonard (1980) summarized the
basic dgorithm and examples of its applications. Sarpkaya (1989)12
presented a comprehengive review of various vortex methods based on
Lagrangian or mixed Lagrangian-Eulerian schemes, the Biot-Savart law or
the Vortex in Cdl methods Kamemoto (1995)° summarized the
mathemetical basis of the Biot-Savart law methods.

Recently, the firgt International Conference on Vortex Methods has
been hdd in 1999, in Kobe, Jgpan, in which a review of vortex dement
methods by Lewis™, a proposal of a hybrid vortex method by Graham et
.5, areport on vortex method analyss of turbulent flows by Bernard®,
smulation of particulate flows using aVortex in Cdl method by Walther et
a." a convergence study for the vortex method with boundaries by
Ying®, numerica prediction of rotor tip-vortex roll-up in axia flight by a
time marching free-wake method by Led¥, achievements and challenges
by aVortex in Cdl method by Cottet™ and other interesting works related
with different kinds of vortex methods were presented. In this conference,
Kamemoto and Miyasaka (1999)™ proposed a vortex and heat dements
method and showed gpplication results of andyss of unsteedy and

forced-convective heat trandfer around a dircular cylinder in a uniform
flow. After the conference, an interesting book condgting of sdected
papers of the conference has been published in 200012 .

On the other hand, as well as many finite difference methods, itisa
crucid point in vortex methods thet the number of vortex dements should
be increased when higher resolution of turbulence structures is reguired,
and then the computationd time increases rgpidly. Recerttly, in order to
overcome the crucid point, some of leading researchers examined spatia
averaging modds of turbulence in high Reynolds number flows for
Lagrandian large eddy smulation. Leonard and Chua (1989)™ proposed
application of the Smagorinky modd in smulations of interaction
between interlocked vortex rings and interaction between two colliding
vortex rings. Mandfidd et d. (1998)™ (1999)™ proposed a dynamic
eddy viscosty modd of subfilter-scde stresses for Lagrangian vortex
element methods and gpplied it to smulation of collison of coaxid vortex
rings Kiyaet a. (1999)" carried out smulation of an impulsively started
round jets by a3-d vortex method using the Smegoringky modd. Sdtaraet
d. (19981 smulated vortex shedding from an osdllaing circular
oylinder with use of turbulence modding of Smegorinky type in a
Vortex in Cdll method.

In this paper, attractive cheracteridtics of the Biot-Savart law vortex
methods developed and examined up to thistime are described, explaining
the mathematica background and showing typicd results of numericad
smulaion of two and three-dimensiond unsteady separated flows. Then,
introducing the new movement of turbulence moddling for Lagrangian
vortex methods, the subjects of the vortex methods which should be solved
asatool of the Lagrangian large eddy smulation are discussed.

2 Algorithmsof Vortex Methods based on Biot-Savart Law
21 Mathematical Basis
Since the vortex methods have been developed for numerica andys's of
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incompressible and unsteedy flow, their governing equiations are thought to
be based on the Navier-Stokes equation and the continuity equation for
incompressible flow which are written in vector form asfollows.

%+(u xgrad) u = - rigrad p+nNZu ®

divu=0 @)
Alternative expresson of the governing equations of viscous and
incompressible flow gives the vorticity trangport equation and pressure
Poisson equetion which are derived from the rotation and divergence of
Navier-Stokes equations, respectively

%.}.(uxgrad)w :(Werad)u+nN2\N (3

NZp=-r div(uxgrad u) G
where u isavelocity vector. Thevorticity w is defined as
W =rot u (5)

Lagrangian expression for the vorticity transport equation (3) isgiven by
%:(w xgrad ) u +nf2w (6)
When atwo-dimensond flow is dedt with, the firgt term of the right hand
sde in equation (6) disgppears and o the two-dimensiond vorticity
transport equation is Simply expressed as
W R ™
dt
Inthe Biot-Savart |law methods, the vorticity trangport eqution (6) is
numericaly solved by the operator-splitting scheme of Chorin (1973) 1%,
If the vorticity of afluid partide & time t iswritten asw (t), we obtain an
approximate expresson of the change of vorticity through convection and
diffusion during asmal timeinterval dt asfollows.

w (t +dt) =w (t) + (W xgrad) uxdt +nN°w xdt  (8)

In equation (8), the second term in the right hand Sde is based on the
three-dimensond gretching of vorticity, which dways becomes zero for
two-dimengiond flow, and the third term is the rate of visoous diffusion of
vorticity. If the Reynolds number of the flow is suffidently large, the
convection term is congdered much larger than the diffuson term, and
thus, the third term in eguation (8) may be neglected in the computation.
Furthermore, if the high Reynolds number flow is two-dimensond,
equation (8) is goproximated by a smple equation likew (t+dt) =w (t) =
condant. Therefore, if we take a smdl sectiond area ds for the fluid
paticde and the vorticity is asumed congat in this areg, the
two-dimensiond fluid particle is thought a free vortex dement which
transports acongtant circulation ' =w ds.

On the other hand, the motion of the fluid partidle & alocation r is
represented by aLagrangian form of asimple differentia equation.

dr _

~—=u ©)
dt

Then, the trgectory of the fluid patide over a time dep dt is
gpproximately computed from the Adams-Bashforth method asfollows.

r(t+dt) =r(t)+{15u(t) - 0.5u(t- dt) }dt (10

2.2 Generalized Biot-Savart Law
Asexplained by Wu and Thompson (1973)2, the Biot-Savart law can
be derived from integration of the vorticity definition equation (5) as

u=¢w, NGav
QL) NG- (" )" NeG] ds
Here, subscript “o" denotes varidble, differentiation and integration a a
location rq, and Ny denotes the norma unit vector & a point on a boundary
auface S And G is the fundamentd solution of the scdar Leplace

equation with the ddta function d (r-ro) in the right hand side, which is
written as

(11

-1, &0 (2D (12)
=—logc—=+
2p OggRﬂ
or G=_1_ (3D (13
4pR
here, R=r-rg, R=IR|=|r-ro]

In equetion (11), the inner product, ny* Uy and the outer product
No Uo Stand for respectively normal and tangentia velocity components on
the boundary surface, and they respectively correspond to source and
vortex distributions on the surface.
Therefore, it is mathematically understood that a velodity field of viscous
and incompressible flow is arived at the fied integration concerning
vorticity digributions in the flow fidd and the surface integration
coneerning source and vortex digtributions around the boundary surface as
shown in Figure 1.

23 Calculation of Pressure

Ingteed of the finite difference cdculation of the pressure Poisson equation
represented by equation (4), the pressure in the flow fidd is caculated
from theintegration equation formulated by Uhlman (1992)/ asfollows

N 1G . ,
bH*‘QHﬂ—nds—'QNG(U w )dv
< fu &~ U
- {Gxnx—+nxn NG~ w)yds
Ql = X )%

(14

Heref3 is B =linddetheflow and B =1/2 ontheboundary S Gisthe
fundamentd solution given by equation (12) or (13), and H isthe Bernoulli
function defined as

2
H=P, U (15)
r 2
here, u=| ul .

24 Introduction of Nascent Vortex Elements
The vorticity fidd near the solid surface must be represented by proper
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digtributions of vorticity layers and discrete vortex dements o asto satisfy
the non-dip condition on the surface. In the advanced method developed
by the group of the present authors,  athin vorticity layer with thickness hy
is congdered dong the body surface and the surface of outer boundary of
the thin vorticity layer is discretized by anumber of vortex sheet pands as
shown in Figure 2.

If the flow is conddered to be two-dimengond for convenience, and a
linear digtribution of velodity in the thin vorticity layer is assumed, the
norma convective veocity V., on a pand can be expressed usng the
reldion of continuity of flow and the nondip condition on the solid
surface for the element of the vorticity layer [abed] as

v, =L@y h.u., 9 (16)
here, s, hy and u; respectively denote the pand length, vorticity layer
thickness and tangentid velocity a a pand edge Using the reation
between the norma and tangentiad velodities for each pand expressed by
eguation (16), the strength of the vortex sheet and/or source of the pand for
the following step can be caculated numericaly from eguation (11).
On the other hand, the vorticity of the thin shear layer diffuses
through the pand into the flow field. In order to condder this vorticity
diffuson, a diffuson veocity is employed in the same manner as the
vorticity layer spreading method proposed by Kamemoto (1995 . The
vorticity layer goreading method is basad on the viscous diffusion of the
vorticity in the shear layer developing over a suddenly accderated plate
wal. In this case, the digplacement thickness of the vorticity layer (d)
diffuses with the progress of time as d = 1.136(nT)"2 from the solid surface
a atime T. Differentiating d by T and subdtituting the digance of a
pand from the solid surface hy into d, we obtain the diffusion velocity V,a
the panel asfollows.
_1.136 2y 17
hi + hi,y
here, v is kinematic viscogty of the fluid. If the vaue of ( V+Vy)
becomes positive, a nascent vortex dement isintroduced in the flow fied,
where the thickness and vorticity of the element are given asfollows.

Va

hvor = (Vc + Vd )th (18)
w, =—C (19
° A + AIOI'

Here ' is the drculdion origindly involved in the dement of the
vorticity layer [abed], and A and A are the aress of the vorticity layer
element and the nascent vortex element.

In case of three-dimendond flow caculation, a three-dimengond
nascent vortex dement of a rectangular pardlelepiped is introduced in the
same manner asthetwo-dimensiond case, through each vortex sheet pandl
of the outer boundary of a thin vorticity layer. The detalls of treatments
have been explained in the paper by Ojima and Kamemoto (2000)/%.
As shown in Fgure 3, if a linear digtribution of velodity in the thin
vorticity layer is assumed, the normd convective velodity V. on a pand
can be expressad by using the relaion of continuity of flow and non-dip
condition on the solid surface for the element of the vorticity layer

1 ¢
V.=—3 QA u,ds 20
=5 A Qg Us 20

p i=l
here, Uy =U, Xy and DS =h>Dl,

Where, DS, u; and ng respectively denote the pand ares, the velocity
vector and the normd vector on the side sectiond planes of the dement of
thevorticity layer.  Using the norma velocity for each pandl expressed by
equation (20), the intengty of the vortex sheet and/or source of the pand
for the following step can be ca culated numericaly from equetion (11).

In the same manner as the two-dimensond case, the visoous
diffusion velocity at the pand isgiven as

2h

here, n is kinematic viscogty of the fluid. If V+Vy becomes postive, a
nascent vortex dement is introduced into the flow fidd, where the
thickness and vorticity of the eement are given from the rdation of the

vortex strength conservation asfollows.

(c=1.136) 1)

AW dv
W = @
Ror =(V V)t (23)
VVOr = DSp ><I’1U (24)

Here, w isthe vorticity origindly involved in the dement of the vorticity
layer, V and Vi are the volume of the vorticity eement and the nascent
vortex dement. Every vortex dement is introduced at the digtance of
0.5h,,r from the pand asavortex plate.

It will be noteworthy thet as a linear digtribution of velodity is
assumed in the thin vorticity layer, the shearing stress on the wall surface
is evaluated gpproximetely from following eguetion as far as the thickness
of thevorticity layer is sufficiently thin.

L p— ()

Ty

25 Replacement with Equivalent Vortex Blobs
For amplification of numerica trestments, every nascent vortex eement
which is far from the solid surface, can be replaced with an equivaent
discrete vortex. Either in two-dimensiond or in three dimensiond flow, the
discrete vortex dement is moddled by a vortex blob which has its own
smoothed vorticity digtribution and a core radius, which preads according
to the visoous diffusion expressed by thethird term intheright hand side of
equation (8) as explained by Kamemoto (1995)2. In the vortex method
used by the group of the present authors, every nascent vortex dement
which moves beyond a boundary at the distance of four times h; from the
olid surface, is replaced with an equivdent, circular (2-D) or sphericd
(3-D) vortex blob of the core spreading model.

When atwo-dimensond flow is dedlt with, the totdl circulation and
the sectiond areaof the blob core are determined to be the same asthose of
the rectangular nascent vortex element. As explained by Leonard (1980)%,
if a vortex blob has a core of radius € ; and totd circulation I' ;, a
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Gaussan digtribution of vorticity around the center of theblobisgiven as

G ’[ - GZP
W)= —expi- g2 )
e, i
here r; denotes a pogtion of the center of the blob. As explained by
Kamemoto (1995) 13, the spreading of the core radiuse ; according to the
viscous diffusion expressed by equation (7) is represented as

e o}

dt 2e,

When a three-dimensond flow is treated, a nascent  vortex
element of arectangular paraldepiped is replaced by an equivaent vortex
blob with a sphericaly symmetric digribution of vorticity which was
proposed by Winckdmans and Leonard (1988) 2 and modified by
Nekanishi and Kamemoto (1992)@. The detals of trestments are
explained in the paper by Ojima and Kamemoto (2000)/2. A vortex blob
is a gohericd modd with a radidly symmetric digribution of vorticity.
Oncethei-th vortex blob is given in aflow field by the postion ri=(r,, ry,
rp), its vorticity wi=(w, W, W) and its core radius g, the vorticity
digtribution around the vortex blob isrepresented by following equations.

de; _ 2.242%v @n

w; (I‘) =W p(|r -h |/ei )e{gdvi (28)

p(x) =15/8p (x* +1)"2 (29)
Here, p(X) is samoothing function proposed by Winckdmans & Leonard
(1988)@

On the other hand, the evolution of vorticity is caculated by equation

(8) with three-dimensiond core spreading method modified by Nakanishi
& Kamemoto (1992),  In this method, the stretch term and diffusion
term of equation (8) are separatdy conddered.  The change of coreradius
due to the gtretching is caculated from following equetions.

dw

— =(w>grad) u (30)
p (w>grad)
a_ 1 ﬁd_w 31)
dt |w,| | dt

ages  __ e d (32

&dt gy 24, dt

Here, eand | are the core radius and the length of the vortex blob modd as
shown in Figure 4. The viscous term of equetion (8) is expressed by the
core spreading method.  The core spreading method is basad on the
Navier-Stokes eguetion for viscous diffuson of an  isolated
two-dimensond vortex filament in a res fluid, and as well as equetion
(27), therate of core spreading is represented as follows.

gleo  _cn, (2240 (€<)

gdt dﬁ\ﬂuson - Zet
Taking account of two factors expressed as equdions (32) and (33),
characteridic vaues of the dongated blob dement are obtained from the

following equetions.

€xle 6 asled ﬂth (34)

Cum =€ té&—(—+ to =
e ' idt Dhreich gdt Bhitfusion

e =1+ 08 (@)
o, 0

|Wt+Dt| =|Wt|>i; s (36)
e g

And then,, the dongated dement is replaced into a new and sphericd
vortex blob which has the volume equivaent to the elongated one.

2.6 Numerical Procedure.
If dl of the vorticity layers exiging in the flow fidd & any time are
represented with discrete vortex digtributions, the strengths of the source
and/or vortex didributed dong the boundary surface are numericdly
cdculaed 0 as to satidfy the boundary conditions of norma or tangentid
velocity components on it, by gpplying the popular scheme of the pand
method to the integration equation (11). Once the source and/or vortex
ditributions are determined in the right hand sde of equation (11), not
only aflow veodity a an arbitrary postion in the flow fidd but dso the
convective velodity of each discrete vortex can be calculated. Substituting
the veodities into equations (8) and (10), the vorticity transport and
trgectory of each discrete vortex over the time dep are numericdly
invedtigated, which provide new didributions of discrete vortices
corresponding to the vorticity layers transported during the time step.
Consequently, the iteration of the above procedure provides the
basc sheme of the gridfree Lagrangian smulation of unsteedy,
incompressible and viscous flow, meking use of the Biot-Savart law vortex
methods.

2.7 Application to Forced Convective Heat Transfer

When aforced heet convection in aflow of a high Reynolds number and a
not-so-amndl Prandtl number is assumed, we can ignore the effects of
natura heet convection. Then, the energy equation for forced convective
heet transfer is expressed as

111—-t|—+(u xgrad )T =aN?T @37
where T is temperature and o is the thermd diffusvity. Lagrangian
expression for the energy equation (37) are given by
ar _ aN T (33
dt
Itisclear thet the energy equition (38) is of the Smilar form to the vorticity
trangport equetion (6). When a two-dimensond flow is dedt with, the
vorticity trangport equation is Ssmply expressed by equetion (7). Therefore,
the form of eguation (38) becomes completdly the same as  equation (7).
Thisfact seemsto suggest that the energy eguation (38) can be solved inan
andogous way, with nascent temperature dements, in place of vortex
elements using atime splitting scheme.

In the vortex eement method developed by the group of the present
authors, the viscous diffusion expressad by equation (7) is goproximately
taken into account by the core spreading method. Therefore, in the present
method, the thermd diffusion expressed by equation (38) is smilaly
congdered by introducing athermd core to a discrete heet dement which
Sporeads with the increase of time, and as same asthét of a vortex dement,
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thetragjectory of each heat element in flow isrepresented by equation (9).
The details of testmentsin the caculation of forced convective heat
transfer are explained in the paper by Kamemoto and Miyasaka (1999)™.

3 TheWay to Lagrangian Large Eddy Smulation

31 Turbulence Moddsfor theVortex Methods

When treating high Reynolds number flows, one can perform a large
eddy smulation by modding the effect of the smdl or subgrid-scale eddies
on the larger scdes.  In their study on three-dimensiond interactions of
vortex tubes, Leonard and Chua (1989)™ proposed and used anonlinesr
coregpreading agorithm, which is a pioneering work of modding
turbulence for a vortex method in the spirit of large eddy smulation. To
accomplish this in a vortex method, they introduced a subgrid-scde
visoosty ngss and implemented the following nonlineer core-spreading
agorithm for expression of changing rate of coreradiuse,

de? 1 dw
= 4n - e.2 - (39)
dt TS W odt

where w = w| , and the second term on the right-hand side is the inviscid
change in core size due to gretching of vorticity and the subgrid-scde
viscodty depends on the locd vorticity stretching rate (U/w) (dw / dt), as
follows.

Ngss = maxg), ce? 1%3 (40)
& dtg

where C is a congant. They have pointed out that the expression (40) for
Osss isvery amilarin form to the so-caled Smagoringky mode used in
large eddy simulation with finite difference methods and given by

L1/2
Ngs =C'D? %Mg (41)
e % g
where C is a condant and D is the scde of grid. Using the nonlinesr
coreqreading scheme in amulations of interaction between two
interlocked vortex rings and interaction between two colliding vortex rings,
Leonard and Chua succeeded in observing the dynamics of the space
curves of the vortex tubes, the development of complex internd structure
in the vortex cores and the reconnection of vortex lines.

Mandfield et d. (1998)™ (1999) ™ developed a dynamic eddy
viscodty modd of the subfilter-scde stresses for Lagrangian vortex
dement methods. Ther LES stheme is based on the filtered vorticity
transport equation which is expressed as

R @
X T

In this equation, R; is the subfilter-scae (SFS) vorticity stress, which
accounts for the effect of unresolved velocity and vorticity fluctuations and
isexpressed as

Ru"(vmj-wﬂj)- (Ui_Wj'Ui"Tj) “3)

where bars are used to denote patidly filtered quantities. In order to close
the filtered vorticity trangport equation (42), they provided amodd for the

vorticity stress R based on the eddy diffusivity model

R xR = - K, Kiwr) (44)
where the eddy diffusivity is expressed as
n, =C?0S (45)

here, the modulus of the filtered drain-rate tensor is defined as |§ =
(2SmSm)“2 In equation (45), Disthefilter szewhich isrelated to the core
sze of the vortex dements used to represent the vorticity field, and C, isa
modd congtant which is determined locdly in the calculations according
to filtering operations Applying the LES modd to smulation of the
collision of coaxia vortex rings, Mansfield et a (1999) showed that the
Lagrangian LES scheme captures severd experimentdly  observed
features of the ring calisons induding turbulent breskdown into
andl-scde dructures and the generation of smdl-scde radidly
propagating vortex rings.

Recetly, Kiya e d (1999) ™ modified the nonlinear
core-goreading agorithm proposed by Leonard and Chua and examined
the effect of the subgrid-scale eddies on the flow of larger scales In the
origind modd of Leonard and Chua, as shown in equation (40), if dw
/dt<0, the subgrid-scde viscodty hgss becomes ngss = 0. Kiya et d.,
however, did not use this procedure, but they smply gpplied the sub-grid
scae viscosity based on the Smagoringky sub-grid scale viscosity, which is
expressed as
2pp LW (46)

w dt
where Dis replaced by the core radius g of avortex dement and the vaue
of the modd congtant ¢ = 0.17 , which is recommended for free turbulent
shear flowsin the Smagorinsky modd, was employed in their sudy. They
examined three modds of core spreading based on viscous diffusion,
turbulent eddies and both effects, which are respectively expressed as

s = C

2

dt
de? 48
ar s ‘o
de’ 49
W:zl’(n +nsss) (49)

Applying each modds to an impulsvely started round jet forced by two
hdlical disturbance rotating in the counter directions, Kiya et d. compared
vortica gructures in the jet among the modds, and concluded thet the
smulaion of the forced round jet by the turbulence modd seems to
generate turbulent vortical structures dthough its vaidation based on DNS
or experimentsis|left asastudy in the future.

3.2 On Challengeto Modeling of Wall Turbulence.
So far, dl of the turbulence modds described above have been gpplied
only for free turbulence. Sdltara et d. (1998)1" smulated vortex shedding
from an osdillating circular cylinder with use of turbulence modding in a
vortex in cdl method. However, any chdlenging works on modding of
wall turbulence for the Lagrangian vortex methods have not been reported,
yet.

As the dgorithms of the advanced vortex method explained in the
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section 2 are very Smple, it seems not o difficult to take account of the
effects of suboore (subfilter) eddies on the flow represented with discrete
vortices. Therefore, it will be very interesting to test the SGS modds
proposad for free turbulencein smulaion of ahigh Reynolds number flow
around a bluff body.

4  Application Examples

For invedigation of ungteady and vorticd flows, the Biot-Savart law
vortex methods have S0 atractive advantagesthat grid generation in aflow
fidd is not necessary and any conventiond turbulence modds of
time-mean type are not used. Therefore, the vortex methods have been
aoplied for anadyses of undeady separated flows rdated with various
problems in engineering fieds. The fallowings are typicd examples of
goplication of the advanced vortex method by the group of the present
author.

41 Ungeady Flow past an Oscillating Airfail

In order to examine the effectiveness of the present method, the
two-dimensond unsteedy separated flow past a shusoiddly oscillating
NACA 0012 airfoil was computed by Etoh et d. (1997) . Figure 5
shows ingantaneous flow patterns a the mean angle of atack a = 15.0°
during pitching up and down motion, when the airfoil was oscillated in
pitch angle about the quarter chord point asa = 15.° +5.0°snWT  a the
Reynolds number Re=50 ~ 10°, where T is the non-dimensiond time
based on the cord length and the veocity of uniform flow, and the
non-dimensiond time step was dT=0.026 and Wwas given ssW=10. It
is dearly shown that in the case of pitching down mation, the large
dynamic gdl vortex and trailing edge vortex ill exit around the airfail,
whereasin the case of pitching up mation, the dynamic gl is developing
but the both vortices are not so large, yet.

4.2 Ungeady Flowsaround Three-dimensional Bluff Bodies
Recerttly, in order to confirm the applicability of an advanced vortex
method to a three-dimensiond unsteedy separated flow, the developments
of vortica wakes behind a sphere and a prolate spheroid after their
impulsive gart a a congtant speed in arest fluid were smulated by Ojima
and Kamemoto (2000) @, In their caculation, both a sphere and the
prolate spheroid were represented by 360 source and vortex pandls.
Figure 6 shows cdculated ingantaneous flow patterns represented by
discrete vortices and isosurfaces of streamwise vorticity behind the sphere
a anon-dimensond time tU/D=10.25 dapsd after the tart & aReynolds
number Re=300, where U and D denote the speed and the diameter of the
sphere  respectively, and the time step Sze was dtU/D =0.05. In this
figure, three-dimendond vortex dructures are dearly shown in the
separated flow, and the development  of spird structure of wake and the
interesing phenomenon like the bresk-down of hear pin vortices into
turbulence vortices of smal scale can be observed in the wake.
Figure 7 shows ingtantaneous flow patterns behind the prolate spheroid of
the axisratio b/a=1/3 represented by discrete vortices and isosurface of the
sreamwise vorticity for  tU/D=1025, atack-angle a=00" ad

Re=Ua/n=1,000, where a and b denate the length of mgjor and minor axes
respectively, and thetime sep szewes  dtU/D =0.075. It is seen thet the
typica hairpin-shaped sructure begins to be periodicaly formed behind
the spheroid in the Smilar manner to the wake of a sphere as shown in
Figure 6.

4.3 Unseady Flow in a Centrifugal Pump

The advanced vortex method has been gpplied to such an engineering
purpose as smulaion of ungeady and complex flow through a
two-dimensiona centrifugal impeller by Zhu et d. (1998)®. Figure 8
shows an ingantaneous pattern of flow through the impeler in the case of
partid discharge (60% of the design flow rate) & anon-dimensond time
T=2.0 after the Sart of rotation a a condtant gpeed a the Reynolds number
Re=10°, where the time step size was dT=0.01 and the non-dimensional
vaue were basad on the inlet meridian velocity a the design condition and
the outer diameter of the impeller. It is dearly demondtrated that the flow
becomes completey non-axi-symmetricad and some of blade-to-blade
passages seem to be blocked with separation bubbles.

44 Rotor-Stator Interaction in a Diffuser Pump

As the flow-undeadiness generated by rotor-daor interaction in
turbomeachinery usudly causes serious problems concerning vibration and
noise, development of easy-to-handle methods have been expected to
smulate the red ungeedy-interaction without introducing either a
diding-surface between the rotating and sationary frames or turbulence
modds of time-mean type. In order to examine the gpplicability of the
advanced vortex method for those purposes, the unsteedy and interactive
flows between a two-dimensond centrifugd impdler and a surrounding
vaned diffuser were smulated by Zhu and Kamemoto (1999)%. In the
cdceulaion, each vane of the impdler and diffuser was represented 50
vortex pands, and the time step Sze and Reynolds number were teken as
dt=T/150 and Re=10° respectively, here T is the period of impeler
revolution. Figure 9 shows examples of cdculated ingtantaneous pressure
ditribution & atime and vaiation of gdic pressure with time & a point
close to the suction-sde of leading edge of a diffuser vane compared with
experimental data . It is found that there exist considerable differences
of satic pressurein the flow fidd around the diffuser inlet correponding to
the relative position between impeler and diffuser vanes. And it is one of
the mog interesting points that variaion of the cdculated pressure
coefficient Cp is in very good agreement with experimenta one in its
absolute value.

45 Smulation of Threedimensonal Ungeady Flows through a
Wind Turbine
In relation with further development of promising dean energy resources,
invedtigations of unsteady and three-dimendond characteridtics of flows
around wind turbines are required. Especidly, for conditions out of the
converttiond design, it is necessary to predict the features of complex
vorticd flows to design suitable operation procedures. Corresponding to
those requirements, smulaion of three-dimensond and unsteady flows
through a horizontd-axis wind turbine (HAWT) of dngle blade was
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performed applying the advanced vortex method by Gjima and
Kamemoto (2000)?". In the calculation, the blade was divided into 572
source and vortex pands (span wise: 22, sectiond blade dement: 26), and
the time step Sze and Reynolds number were taken as dtV/R=2rt /(200Q2 )
and Re=VRv =1.0x 10°% whereV, RandQ denote the blade tip velocity,
the rotationd radius of the blade tip and angular velocity. Figure 10 shows
cdculaed ingantaneous flow pattern represented by discrete vortices a tip
speedratio A =V/U=8.0 &fter three times of rotor revolution, where U isa
wind velocity. At the initid stage of the flow, complex wake gtructure is
formed behind the rotor blade dueto  interaction among Sarting vortices
shed from the trailing edge and the longitudina vorticesshed from the tip
and root of the blade. And it is observed that as time goes on, the garting
vortices flow downgtream and the longituding vortices tend to have
dominant role in the flow field. Figure 11 shows instantaneous pressure
digtributions on the blade surfaces after threerotor revolutionsforA =8.0. It
is seen thet alower pressure region develops near the tip and leading edges
on the suction side of the blade.

46 Numerical Fish

Recently, in rdation to consarvetion of fish resources, development of
numericd prediction technique for confirmation of safe swvimming of
fishes through a hydraulic turbine of a power station. For this purpose, the
group of the present authord® have started to gpply their vortex methods
to numericd amulation of fish swimming. Figure 12 (a) shows showsthe
agpect of swimming of a two-dimensond trout obtained from a 2-D
cdculaion. Blue vortex dements means dockwise rotation and red
eements are counter-dockwise vortices We cen find thet there is no
separation region around  the fish and dternative vortex rows are formed
behind the fish. Figure 12 (b) showstheinstantaneous presuure digtribution
on the skin of a trout obtained from 3-D cdculation, here, the red skin
shows a higher pressure region and blue oneis alower pressure region.

5 Conclusons

Inthis paper, the mathematica basis of the methods, cdculation agorithms
and an advanced vortex method developed by the group of the present
author were explained in the section 2.

In the section 3, recent pioneering works on LES modding by
leeding researchers were reviewed, and necessity of development of wall
turbulence models was described

Inthe section 4,  from the various examples of gpplication, it was
confirmed that  the vortex methods standing on the Biot-Savart law are
conggting of smple agorithms based on physics of flow and they provide
completely grid-free Lagrangian calculation.

Findly, it may be possibleto say thet the advanced vortex  methods
are to yidd a promisng wey to a grid-free Lagrangian Large Eddy
Simulation of unsteady and complex flows of higher Reynolds numbers.
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Figure6: Instantaneousflow patternsrepresented by discretevorticesand
isosurfaces of streamwisevorticity behind agphere (tU/D=10.25, Re=300).
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Figure 7: Ingantaneous flow patterns represented by discrete vortices
and isosurfaces of dreamwise vorticity behind a prolate spheroid
(tU/D=10.25, a=0.0°, Re=1,000).

(b) Pitchingupata = 15.0°(T=14.1)
Fogures:  Indantaneous flow patterns around an oscillating airfoil (@) Flow pattern represented by discrete vortices.
NACA 0012 .(a = 15.0° +5.0°snWT, Re=50" 107 ®)
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(a) Flow pattern.

(b) Ve ocity vectors.

Figure8 Two-dimensond ungeady flow in a centrifugd pump at 60%
of the design flow rate.

(b) Isosurfaces of sreamwise vorticity.
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Figure 11: Instantaneous pressure distributions on
the blade surfaces after three rotor revolutions for
A =8.0

(b) Vaiation of gatic pressure with time a a point dose to the suction-side
of leading edge of adiffuser vane

Figure9:  Interactive pressure distribution around rotor and stator vanes
in adiffuser pump (100%).

o (@ Flow around aswimming trout (2-D).

(b) Instantaneous pressure distribution around atrout (3-D).
FigurelO: Ingantaneous flow pattern behind a wind turbine after three

times of rotor revolution at tip speed ratio A =8.0 Figure 12: Flow around anumerical fish.
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