Large Eddy Simulation Of Flow Past A Two-dimensional Hill
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Turbulent flow past an idealized two-dimensional hill with two different slopes is simulated by LES technique. Simulations are
performed by both conventional and dynamic Smagorinsky models. Standard Smagorinsky case is simulated with three different

types of near-wall treatments.

Results of simulations by log-law modified to take into account for local and instantaneous

pressure gradient effects are closer to the experimental data in terms of mean velocity and wake size.

1. INTRODUCTION

Wind flow around hill and over complex terrain is of great
interest in engineering applications like transport and dispersion of
pollutants in the atmosphere, agro-meteorological study, construction
of wind mills and airport etc., Practically, an infinite number of
situations are possible due to varieties of hill geometry, arrangements,
and approaching flow conditions. Various experimental
measurements have been reported for different configuration of the
hills at different Reynolds numbers [1-5]. Numerical predictions have
been performed [4-8], invariably all the calculations so far are of
RANS type and no Large Eddy Simulation (LES) study has yet been
reported yet.

In LES method, large-scale motion is resolved by discrete
computational grid and directly computed by numerical method and
small-scales of motions are modeled. While this technique has been
proved to be very successful in simulating simple flows over smooth
boundaries and is considered to be a promising tool in engineering,
its application to flows in natural environment is not quite
straightforward, as boundaries are generally rough and their geometry
is very complex.

In the present work, we perform Large Eddy Simulation of flow
past an isolated two-dimensional hill with particular emphasis on
investigation appropriate near wall boundary condition to be applied
to simulation of high Re flows over natural terrain. The hill is of bell
shape defined by an analytical expression. Experimental
measurements are available at moderately high Reynolds number.
Two different LES models — standard and dynamic Smagorinsky and
three types of near wall boundary conditions are considered for
simulation. Results are analyzed in terms of mean velocity and
turbulence quantities, influence of boundary conditions are elucidated.

2. DESCRIPTION OF THE HILL GEOMETRY
AND FLOW CONDITION

The flow configuration considered is that past an isolated hill
(Fig.1), a smooth two-dimensional topography, defined by an
analytical expression Zg _ 1 , where z is the elevation of the
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ground at horizontal position x, and H is the height of the hill. We
consider this test case with two maximum values of the slope angle
viz. 15 degree and 25 degree, measured from the horizontal direction,
determined by values of n. Table 1 gives details of index n, hill height
H and the respective slope angle. This flow has been subjected to a
detailed experimental study and experimental results are available in
Nakayama and Yokotal®. Mean velocity and turbulent stresses have
been measured for the Reynolds number based on the oncoming
reference velocity U, and H of 13000. This is relatively a gentle
topography and no flow separation is reported.
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Fig.1 Flow configuration

Table 1. Hill Geometry parameters

H n Maximum slope angle
(cm) (degrees)

10 23 25

5 20 15

3. NUMERICAL METHODS

The basic equations used in the present LES are three-
dimensional, time dependent, Navier-Stokes equations, filtered in
order to separate the large scale and the small-scale motions. We
consider isothermal incompressible flow and solve the filtered
governing equations along with closure subgrid-stress model. As the
focus of the present work is a study on the influence of boundary
conditions, governing equations are not described here and they can
be found in Nakayama and Noda™ and standard text books 2231,
LES model chosen is the conventional Smagorinsky model in which
the turbulent stress, Rj; is modeled as
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where, ks is the subgrid turbulent kinetic energy, &; is the Kronecker
delta, vg is the subgrid eddy viscosity and Sj; is the strain tensor. The
eddy viscosity vg is modeled by
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where, A is the grid size defined by the geometric average of the grid
spacings in three directions, (Ax,Ax,Ax,)"*, ui is the spatially

filtered velocity component in the streamwise -x; direction, u, in the
spanwise — x, direction and u3 in the cross-stream —xs direction, i.e
(X1, X2,X3)=(X,y,2); (ug,Up,U3)=(u,v,w). Cs is the model constant for
which we use the value of 0.13 in the case of Standard Smagorinsky
model. We also use the d}/namic procedure to determine the value of
C, due to Germano et al.l*! with Lilly’si*® modification.

(1) Calculation domain and grid

The computational region covers the test flow shown in Fig.1,
from about 8.5H in the upstream and 14H in downstream in the
streamwise direction, 7H in the cross stream-wise and 4H in the
spanwise direction. A rectangular grid is used, which is uniformly
spaced in the spanwise direction. In the streamwise direction, points
are closely spaced (90 points) within 4H on either side from the hill
summit, stretched with a factor of 1.038. In the cross stream-wise
direction, the first point from the ground is placed at 0.03H near the
bottom of the wall, stretched with a factor of 1.05 upto 0.5H and then
compressed with a factor of 0.95 upto 1.5H and then placed non-
uniformly with stretching factor of 1.1 until the end. This grid



distribution gives z*=zu,Vv of the first node about 20 on the top of hill
and about 15 at x/H=4 and thus viscous layer are not resolved. The
total grid size is 128x61x21.

The curved boundary is represented by cartesian co-ordinate
system with staggered mesh arrangement. The boundary conditions
are applied at the mesh points closest to the real boundary, but not
exactly on it. In order to find the influence of the approximate
position of the boundary, example of calculated velocity vectors along
with grid and test case geometry between two streamwise stations are
shown in Fig.2. This figure shows that there is no such thing as step
corners due to the approximation. Small deviation of the vectors from
the direction tangent to the local boundary surface is seen, but this
does not influence the results on the whole.

(2) Numerical schemes

We solve the governing equations by a finite difference
procedure. Non-linear convective terms in the equations are
discretised by a third order upwind differencing, (UTOPIA) to avoid
stability problems and viscous terms are discretised by second-order
accurate central differencing scheme. Inflow conditions for the
streamwise velocities are adopted from experimental data. Radiation
outflow condition is applied at the downstream boundary. The
periodic boundary conditions are used for the spanwise direction. In
the cross flow direction, the nonslip boundary conditions are applied
on the ground surface and slip conditions are applied on the top
boundary. HSMAC iteration scheme is used for calculating pressure.
Time advancing of the momentum equations is done by a second-
order accurate explicit, Adams-Bashforth method. Performance of
the code had been assessed earlier for flow past a bluff body and for
the curved geometry by Nakayama and Nodal*. All the calculations
are performed with the non-dimensional time step, dtU,/H of 0.001.
All calculations have been allowed to settle down until 40 non-
dimensional time units, and then statistical averages over the next 40
non-dimensional time units are obtained that are presented below.
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Fig. 2. Enlarged plot of v)é{oHcity vector near the solid
boundary

(3) Wall boundary conditions

In wall-bounded flows, the only correct boundary condition at
the surface is the no-slip condition, but this requires calculations up to
the wall with sufficient grid resolution. However, as the Reynolds
number increases, boundary layer thickness decreases, resulting in
requirement of large number of grid points. In RANS type
simulation, wall-function approach is used as one method of way out
to meet this condition. But in LES the problem is severe as pointed
out by Spalart et.al.l*®! and no definite solution has been proposed yet.
We perform calculation for the present test case, with non-slip

boundary condition as a baseline solution to compare and this case is
referred to as Case A.

Hino and Okumural®” have performed flow over a wavy wall by
assuming single-layer linear distribution for the velocity. This
approximation is good only when viscous sublayer can be resolved.
When the laminar sublayer cannot be resolved by the computational
grid, artificial boundary condition may be applied at some distance
from the wall. In LES, this technique is recently referred to as “Off
the wall” boundary condition, (Cabot!*®). As one method, Werner-
Wengle™ proposed instantaneous two-layer linear-power law
velocity distribution. This has been used quite extensively in many
LES calculations, reported by Rodi et.al.?!. However, they cannot be
used in separated flows and non-equilibrium flows. This two-layer
model is modified into three-layer linear-loglaw version in the format
given by Von Karman'?Y, to specify the boundary conditions for the
velocities in the tangential directions, at the first point from the wall.
Nakayama et.al.?? have tested the validity of this boundary condition,
for LES of flow over an isolated hill at Re=50000. The maximum
slope angle of this is 45 degrees from the horizontal direction and
according to the experiment, the flow separates on the lee side and
then reattaches. They found that the prediction with log-law
boundary condition was closer to the experimental data compared
with calculations without it. However, they indicate that the use of
the log-law was too dissipative to show significant turbulent
fluctuations.

We test once again the three-layer linear-log law in the present
model and this is referred to as Case B. In this method, an
approximation to a wall law given by the following equation is used.
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where, z*=zuyv and u*=u/u, are the non-dimensionalised vertical
distance and velocity respectively. The friction velocity, u; is
calculated from these equations with the velocities at the second point
from the wall.

Natural terrain is subjected to wavy topography and the flow past
it is subjected local acceleration and deceleration due to pressure
gradients and resistance due to roughness of boundary. In Case C, we
use the log-law modified to include local and instantaneous pressure
gradient effects in the format given by Wilcox®, to specify velocities
at the first point from the wall. The wall function for the velocity
modified to include pressure gradient effects is given as:
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where, P* is the dimensionless pressure-gradient parameter defined by

+ :Ldj, where s is the distance along the boundary. The above
ud ds
equation is proposed for mean velocity profile. In order to apply it to
the instantaneous velocity, the coefficient C, for the pressure gradient
term is set to 0.005.

Table 2 gives the details of different computational runs and
keys used to refer to them.

4. RESULTS AND DISCUSSION

Computational cases Case A to Case C is run for hill with
maximum slope angle 25 degrees and all the four cases are run for hill
with maximum slope angle for 15 degrees.



Table 2. Computational runs

Smagorinsky .

Model Boundary condition Key
Standard Non-slip Case A
Standard Conventional Case B

log-law
Standard Log-law_ with pressure Case C
gradient effects
Dynamic Non-slip Case D

(1) Mean velocity

Profiles of time averaged streamwise velocity component,U; at
specified streamwise stations computed using different boundary
conditions, by two Smagorinsky models and experimental results are
plotted in Fig.3 (a) for hill with 25 degrees and Fig. 3(b) for hill with
15 degrees. The inflow velocity profile for the calculations at station
x/H=-4 and x/H=-6 for 25 degrees and 15 degrees respectively are
taken from that of experiment. At x/H=0, experimental results show
that the flow accelerates just near the top of the hill. At the same
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(a) Hill with slope angle 25 degrees
Fig.3. Velocity profiles along selected cross-stream sections
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station, calculation with the nonslip boundary condition (Case A)
shows the development of the boundary layer and the maximum
velocity is drastically under-predicted. Calculations using the log-
law boundary condition (Case B) show a thinner boundary layer and
results by the modified log-law (Case C) are seen closer to the
experiment. As it can be observed, Case A shows separation at x/H=2
and x/H=4 for 25 degrees and 15 degrees hill respectively and predicts
a large re-circulation zone at further downstream. There the results
using the modified log-law (Case C), in which the effects of one of
the locally changing parameters are included, show trends that are in
better agreement with the experiment. This implies that to improve
simulation results for a complex topography, one needs to include
influence of locally and temporally changing parameters

(2) Turbulence quantities

Calculated shear stresses are shown in Fig. 4 at two streamwise
stations — x/H=0 and x/H=6 along with the experimental data. On top
of the hill, all three cases grossly under-predict the distribution and at
farther downstream, there is a improvement in the predictions. At
x/H=0, prediction with the non-slip boundary condition case is closer
to the experimental values. This can be attributed to the fact that early
massive separation caused is responsible for turbulent production.
Prediction using the conventional log-law is the worst among and this
may be interpreted that in this case very small turbulence is produced.
At x/H=6, the results of Case A shows a large negative shear stress
which is also due to the large separation. Here the modified boundary
condition appears to give results closer to the experiment.

Reynolds normal stresses are shown in Fig.5 at x/H=6 station.
Case D results are not included as they are found to be very much out
of range. Prediction by non-slip boundary condition shows the same
behavior as noticed earlier. Conventional log-law boundary condition
case results are in between and results of proposed modification case
under predict the stresses. Results on the whole indicate that in order
to improve prediction, some kind of mechanism to produce and retain
turbulence is to be incorporated in the model or in the simulation
procedure.

5. CONCLUSIONS

Large Eddy Simulation of flow past an idealized two-
dimensional hill with maximum slope angle of 25 degrees and 15
degrees at moderate Re number has been performed. Both Standard
and dynamic type Smagorinsky model along with three different types
of near-wall boundary conditions are considered. At first, two
existing boundary conditions — non-slip and conventional log-law
assumption are studied and their limiting behavior is elucidated. A
modification in the conventional log-law to include local and
instantaneous pressure gradient effects that reflects local acceleration
and deceleration due to changing topography is proposed. This
method improved the simulation results in terms of wake size and
mean velocity. But, predictions of turbulence quantities are not
satisfactory. It is found from the present study that for LES of the
flow near ground, where the topography is never smooth and quite
undulating, by considering other parameters such as the rate of
temporal change and three-dimensionality, further refinements may
be possible.
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Fig.4. Shear stress distribution for hill with slope angle 25 degrees
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