回転を伴う乱流場を予測するための乱流モデリングに関する一考察 On the development of turbulence models for predicting turbulent flows with system rotation

小沢 正和,九大院,福岡市東区箱崎 6-10-1, E-mail: ninja@aero.kyushu-u.ac.jp 安倍 賢一,九大工,福岡市東区箱崎 6-10-1, E-mail: abe@aero.kyushu-u.ac.jp Masakazu Ozawa, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Ken-ichi Abe, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

In order to develop a turbulence model for predicting turbulent flows with system rotation, some representative explicit algebraic model (EASM) and Reynolds-stress model (RSM) were investigated for channel-flow cases with/without system rotation. By using a set of model coefficients evaluated from the relation between an EASM and a RSM, the results of EASM showed the tendency similar to those of RSM in a rotating channel flow, although further development will be needed especially in the region near the wall surfaces.

1.緒言

回転を伴う乱流場は,風力発電機,ガスタービン,流体継 手をはじめ,種々の場面で遭遇する工学上重要な流れ場の一 つである.このような乱流場を解析する場合,標準的な k-ε モデルでは回転効果を適切に表現できないことは周知のこ とであり,より正確な解析を行うためには高次モデルの特徴 を適切に反映させたモデル化が不可欠となる.最近提案され ている非等方 k-εモデル(陽的代数応力モデル, EASM)は, 流れ場によっては応力モデル(RSM)に匹敵する予測結果を 与えているが,回転乱流場に関しては未だ十分な検討がなさ れているとは言えず,多くの点で改良の余地が残されている.

そこで本研究では, EASM と RSM のモデル定数間の関係 を再検討することにより,回転乱流場における EASM の予 測精度向上へ向けての基本的な指針を得ることを試みた.

2. R S M による回転チャネルの計算

レイノルズ応力 $u_i u_j$ に関する輸送方程式は以下のようになる.

$\frac{Du_i}{D}$	$\frac{u_j}{t}$	$= P_{ij} + G_{ij} + \boldsymbol{f}_{ij} + D_{ij} - \boldsymbol{e}_{ij} \cdot \cdot \cdot \cdot \cdot$	••••	•••••	• • • • • • • •	••(1)
ここ P _{ii}	で :	, 生成項 .				
5		$\mathbf{P} = \left(\frac{1}{\mathbf{u} \cdot \mathbf{u}} \partial \overline{U}_{j} + \frac{1}{\mathbf{u} \cdot \mathbf{u}} \partial \overline{U}_{i} \right)$				

- $P_{ij} = -\left(u_{i}u_{k} \frac{1}{\partial x_{k}} + u_{j}u_{k} \frac{1}{\partial x_{k}} \right)$ $G_{ij} : 孫の回転に伴う生成項 .$ $G_{ij} = -2\Omega_{I} \left(\mathbf{e}_{ijk} \overline{u_{k}u_{j}} + \mathbf{e}_{jik} \overline{u_{k}u_{j}} \right)$
- *f*_{ij}: 再配分項.
- *D_{ii}*: 乱流拡散項.
- *e*": 散逸項 .

本研究において,再配分項 f_{ij} に関しては,式(2)~(8)に示す島⁽¹⁾のモデルを採用した.

$f_{ij} = f_{ij(1)} + f_{ij(2)} + f_{ij(3)} + f_{ij(w1)} + f_{ij(w2)} + f_{ij(w3)} \cdots \cdots$
$\boldsymbol{f}_{ij(1)} = -\boldsymbol{C}_1^* \frac{\boldsymbol{e}}{k} \left(\overline{u_i u_j} - \frac{2}{3} \boldsymbol{d}_{ij} k \right) \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot}$
$\boldsymbol{f}_{ij(2)} = -\boldsymbol{C}_{2}^{*} \left(\boldsymbol{P}_{ij} - \frac{1}{3} \boldsymbol{d}_{ij} \boldsymbol{P}_{kk} \right) $
$f_{ij(3)} = -\frac{1}{2}C_2^*G_{ij} \cdots \cdots$

$$\boldsymbol{f}_{ij(w1)} = -C_1^* \frac{\boldsymbol{e}}{k} \left(\overline{u_k u_m} n_k n_m \boldsymbol{d}_{ij} - \frac{2}{3} \overline{u_k u_i} n_k n_j - \frac{2}{3} \overline{u_k u_j} n_k n_i \right) \frac{k^{3/2}}{\boldsymbol{e} d C_1} \cdots (6)$$

$$\mathbf{f}_{ij(w2)} = \frac{C_2}{C_2^*} \left(\mathbf{f}_{km(2)} n_k n_m \mathbf{d}_{ij} - \frac{3}{2} \mathbf{f}_{ik(2)} n_k n_j - \frac{3}{2} \mathbf{f}_{jk(2)} n_k n_i \right) \frac{k^*}{\mathbf{e} d C_i} \cdots \cdots (7)$$

$$\boldsymbol{f}_{ij(w3)} = \frac{C_2^*}{C_2^*} \left(\boldsymbol{f}_{km(3)} n_k n_m \boldsymbol{d}_{ij} - \frac{3}{2} \boldsymbol{f}_{ik(3)} n_k n_j - \frac{3}{2} \boldsymbol{f}_{jk(3)} n_k n_i \right) \frac{k^{3/2}}{\boldsymbol{e} \boldsymbol{d} \boldsymbol{C}_l} \cdots \cdots (8)$$

ここで, k は乱流エネルギー, e はエネルギー散逸率, n_i は 単位法線ベクトル, d は壁面からの最短距離である.また, A は Lumley⁽²⁾のフラットネスパラメータであり,以下のよう に与えられる.

 $A = 1 - 9A_2/8 + 9A_3/8$ (9)

ここで,不変量 A_2, A_3 は以下のように与えられる.

$A_2 = a_{ij}a_{ji} \cdots \cdots$
$A_3 = a_{ij}a_{jk}a_{ki} \cdots \cdots$
ここで ,
$a_{ij} = \overline{u_i u_j} / k - 2\mathbf{d}_{ij} / 3 \cdots (12)$
である.
式(3)~(8)中のモデル関数 $C_1^*, C_2^*, C_1^{\prime *}, C_2^{\prime *}$ は,以下のよう
に与えられる.
$C_1^* = 1 + C_{1'} f_{R1} A A_2^{1/4} \dots (13)$
$C_2^* = C_2 A^{1/2} \cdots \cdots$
$C_1^{'*} = -2C_1^*/3 + C_1^{'*}$ (15)
$C_{2}^{*} = \left\{ 2(C_{2}^{*}-1)/3 + C_{2}^{'} + 2(C_{2}^{*}-1)/3 + C_{2}^{'} \right\}/2 \cdots (16)$
ここで,
$f_{R1} = 1 - \exp\left[-\left(0.0067R_{t}\right)^{2}\right] \cdots \cdots$
$R_t = k^2 / \mathbf{ne} \cdots \cdots$

であり, \mathbf{n} は動粘性係数である.また,乱流拡散項 D_{ij} は以下の通りである.

散逸項 \mathbf{e}_{ij} に関しては, $\mathbf{e}_{ij} = 2\mathbf{d}_{ij}\mathbf{e}/3$ とモデル化される. 各モデル定数の値は以下のようになる.

Fig.2 Results of RSM: (a) mean velocity; (b) turbulence intensities.

```
C_1 = 2.58, \ C_2 = 0.75, \ C_1 = 1.67, \ C_2 = 0.50, \ C_s = 0.22, \ C_l = 2.5
```

その他のモデル定数は島(1)に従った.

本研究で計算の対象とする流れは,島⁽¹⁾と同様のスパン方向の軸まわりに回転するチャネル流路内の発達流れである. Fig.1 に,その流れの形態と座標系を示す.本研究では,計算手法に関しては Hattori & Nagano⁽³⁾に従っている.

まず,このモデルを用いて求めた平均速度分布と乱流強度 分布を Fig.2 に示す.このときの計算条件はレイノルズ数 $(\text{Re} = 2U_m d/n)$ 11500,ロスビー数 $(Ro = 2dW_3/U_m)$ -0.21 である さらに応力テンソルの各成分の収支を Fig.3~6 に示す.ここ で, y⁺は,各々の壁からの距離を摩擦速度 u_t をもとに無次 元化した距離を表している.

Fig.3~5からわかるように,各方向の乱れの収支を構成している各項の様子については,ピークの位置や形状は異なっているものの,それらの符号や釣合の様子は基本的に共通の特徴を有していると言える.しかしながら,Fig.6に示した i_{uv} の収支では特に回転による寄与が相対的に大きく,安定側ではロスの約半分を担っており,不安定側では逆に生成側で定量的にかなりの寄与を示している.一方,拡散項については,回転場においても壁面近傍以外はあまり大きな値を示していない.特に i_{uv} に関しては,壁からある程度離れた領域では,生成項 P_{12} と再配分項 f_{12} に回転による寄与 G_{12} が加わって釣合を保っていると言える.

これらの考察結果は,以下のような興味深い示唆を与える. Fig.6 のような釣合の条件下では,壁面近傍以外では乱流拡 散項の影響は小さいことから,代数近似を行った場合でも基 本的にある程度の予測精度が期待できる.従って,RSMの 代数表現からレイノルズ応力の陽的表現を導出してモデル の基本表式とする手法に,上記の知見が適切に反映されれば, 回転チャネル乱流の予測がある程度期待できると考えられ る.

以上のことを鑑みて,以降では RSM と EASM のモデル表 式間の関係を改めて検討し,より計算負荷が低く工学的にも 有用である EASM による回転乱流場の予測精度について検 討を行う.

Fig.4 Budget of \overline{vv} : (a) stable side; (b) unstable side.

Fig.5 Budget of \overline{ww} : (a) stable side; (b) unstable side.

Fig.6 Budget of uv: (a) stable side; (b) unstable side.

3. E A S Mの検討

本研究で用いる乱流エネルギー k ,エネルギー散逸率 e の 輸送方程式は,以下のように与えられる.

式(1)における RSM の再配分項 f_{ij} に関する標準的な線形 モデルは以下のように表現できる.

$$\begin{aligned} \mathbf{f}_{ij} &= -C_1 b_{ij} + C_2 \mathbf{t} \, S_{ij} + C_3 \mathbf{t} \left(b_{ik} S_{jk} + b_{jk} S_{ik} - \frac{2}{3} b_{mn} S_{mn} \mathbf{d}_{ij} \right) \\ &+ C_4 \mathbf{t} \left(b_{ik} \mathbf{W}_{jk} + b_{jk} \mathbf{W}_{ik} \right) \end{aligned}$$
(22)

*S*_": 歪速度テンソル.

Ω_{ii}: 渦度テンソル.

$$\Omega_{ij} = \frac{1}{2} \left(\frac{\partial \overline{U}_i}{\partial x_j} - \frac{\partial \overline{U}_j}{\partial x_i} \right)$$
(25)

であり C_1, C_2, C_3, C_4 はそれぞれモデル定数である.座標系が W_k で回転する乱流場を計算する場合には,式(22)の渦度 Ω_{ij}

を $\Omega_{ij} - e_{ijk} \Omega_{k}$ のように補正して用いることになる⁽⁴⁾.

Gatsuki & Speziale⁽⁴⁾は,式(1)に標準的な代数化処理を行った後,非等方テンソル b_{ij} ,歪速度テンソル S_{ij} ,渦度テンソル Ω_{ii} に対して,

$b_{ij}^* = \left(\frac{C_3 - 2}{C_2 - 4/3}\right) b_{ij} \cdots (26)$
$S_{ij}^* = \frac{1}{2} g t (2 - C_3) S_{ij} \cdots (27)$
$\Omega_{ij}^* = \frac{1}{2} g t \left(2 - C_4\right) \left[\Omega_{ij} + \left(\frac{C_4 - 4}{C_4 - 2}\right) \mathbf{e}_{mji} \Omega_m \right] \cdots $

のような無次元化を行い,2次元場において*b*^{*}_{ij}に対する以下のような陽的表現を示している.

$$b_{ij}^{*} = \frac{3}{3 + 6\Omega^{*2} - 2S^{*2}} \left\{ -S_{ij}^{*} - \left(S_{ik}^{*}\Omega_{kj}^{*} - \Omega_{ik}^{*}S_{kj}^{*}\right) + 2\left(S_{ik}^{*}S_{kj}^{*} - \frac{1}{3}S_{mn}^{*}S_{mn}^{*}d_{ij}\right) \right\} \cdots \cdots \cdots (29)$$

なお , ここで , $S^{*2} = S_{mn}^* S_{mn}^*$, $\Omega^{*2} = \Omega_{mn}^* \Omega_{mn}^*$, \boldsymbol{e}_{mji} は置換テン ソル , $g = (1/2C_1 + P/\boldsymbol{e} - 1)^{-1}$ である .

一方 , 非等方 k- モデルのレイノルズ応力表現として , 以 下のような Abe et al.⁽⁵⁾モデルを考える .

$$b_{ij} = \frac{-C_{m} \boldsymbol{t}_{c} S_{ij} - 2C_{D} (C_{m} \boldsymbol{t}_{c})^{2} (S_{ik} \Omega_{kj} - \Omega_{ik} S_{kj}) + 2C_{D} (C_{m} \boldsymbol{t}_{c})^{2} (S_{ik} S_{kj} - \frac{1}{3} S^{2} \boldsymbol{d}_{ij})}{1 + (C_{D} C_{m} \boldsymbol{t}_{c})^{2} [\frac{22}{3} \Omega^{2} + \frac{2}{3} (\Omega^{2} - S^{2}) \{1 + C_{h} (C_{D} C_{m} \boldsymbol{t}_{c})^{2} (\Omega^{2} - S^{2}) \}]} \cdot (30)$$

Abe et al.⁽⁵⁾において非等方テンソル b_{ij} , 歪速度テンソル S_{ij} , 渦度テンソル Ω_{ij} に対して,以下のような無次元化を導入する.

$b_{ij}^* = C_D b_{ij} \cdots \cdots$	•••(31)
$S_{ij}^* = C_D \mathbf{t}_c S_{ij} \cdots$	•••(32)
$\Omega_{ij}^* = 2C_D t_c \Omega_{ij} \cdot \cdots \cdot $	•• (33)

ここで, $\mathbf{t}_c = \mathbf{n}_t / k$, $\mathbf{n}_t (= C_m f_m k^2 / \mathbf{e})$ は渦粘性係数, f_m は $f_m = [1 + (35/R_t^{3/4}) \exp\{-(R_t / 30)^{3/4}]] \{1 - f_w (26)\}$ で定義される低 Re 型モデル関数である.また, $f_w (A)$ は以下のように表される.

$$f_w(A) = \exp\{-(d^*/A)^2\}$$
 (34)

ここで $d^* = (ne)^{1/4} d/n$ である.

式(31)~(33)を用いて式(30)を書き直すと、以下のようになる⁽⁵⁾.

$$b_{ij}^{*} = \frac{1}{1 + \frac{22}{3} \left(\frac{\Omega^{*2}}{4}\right) + \frac{2}{3} \left(\frac{\Omega^{*2}}{4} - S^{*2}\right) f_{B}} \left\{ -S_{ij}^{*} - \left(S_{ik}^{*} \Omega_{kj}^{*} - \Omega_{ik}^{*} S_{kj}^{*}\right) + 2 \left(S_{ik}^{*} S_{kj}^{*} - \frac{1}{3} S_{mn}^{*} S_{mn}^{*} d_{ij}\right) \right\} \cdots \cdots \cdots (35)$$

ここで, $f_B = 1 + C_h \left(\Omega^{*2} / 4 - S^{*2} \right)$, C_h はモデル定数であり,本研究では $C_h = 50$ とした.

式(29)と式(35)を見比べると,式(35)における f_B を除いて同じ形をしており,式(26)~(28)と式(31)~(33)の間で各係数の比較・検討を行うことができる.

壁面より離れた位置において $f_m = 1$, $P/e \approx 1 \ge 6$ 定し, Abe et al. ⁽⁵⁾モデルのモデル定数 $C_m = 0.12$, $C_D = 0.8$ を考慮したうえで,かつ標準的な値として $C_2 = 0.8 \ge$ 置くと, $C_1 \approx 4.44$, $C_3 \approx 1.57$, $C_4 \approx 1.15$ が得られ,その結果として回転に対する渦度の補正係数として $(4 - C_4)/(2 - C_4) \approx 3.35$ が得られる.

さらに本研究では,壁面近傍の乱れの非等方性をより正確 に表現するために,式(35)のモデル式に修正を施した.まず, 以下のように等方性(一次)の項と非等方性(二次)の項に分ける.

$$b_{ij}^{*} = \frac{-S_{ij}^{*} - \left(S_{ik}^{*} \boldsymbol{W}_{kj}^{*} - \boldsymbol{W}_{ik}^{*} S_{kj}^{*}\right) + 2\left(S_{ik}^{*} S_{kj}^{*} - \frac{1}{3} S^{*2} \boldsymbol{d}_{ij}\right)}{1 + \left[\frac{22}{3} \left(\frac{\boldsymbol{W}^{*2}}{4}\right) + \frac{2}{3} \left(\frac{\boldsymbol{W}^{*2}}{4} - S^{*2}\right) \left\{1 + C_{h} \left(\frac{\boldsymbol{W}^{*2}}{4} - S^{*2}\right)\right\}\right]} \\ = \frac{-S_{ij}^{*}}{1 + \left[\frac{22}{3} \left(\frac{\boldsymbol{W}^{*2}}{4}\right) + \frac{2}{3} \left(\frac{\boldsymbol{W}^{*2}}{4} - S^{*2}\right) \left\{1 + C_{h} \left(\frac{\boldsymbol{W}^{*2}}{4} - S^{*2}\right)\right\}\right]} \\ + \frac{-(S_{ik}^{*} \boldsymbol{W}_{kj}^{*} - \boldsymbol{W}_{ik}^{*} S_{kj}^{*}) + 2\left(S_{ik}^{*} S_{kj}^{*} - \frac{1}{3} S^{*2} \boldsymbol{d}_{ij}\right)}{1 + \left[\frac{22}{3} \left(\frac{\boldsymbol{W}^{*2}}{4}\right) + \frac{2}{3} \left(\frac{\boldsymbol{W}^{*2}}{4} - S^{*2}\right) \left\{1 + C_{h} \left(\frac{\boldsymbol{W}^{*2}}{4} - S^{*2}\right)\right\}\right]} \\ = {}^{1}b_{ij}^{*} + {}^{2}b_{ij}^{*} \cdot \dots \dots (36)$$

さらに非等方性の項に以下のような壁面補正モデルを導 入した.

$$b_{ij} = \frac{{}^{1}b_{ij}^{*}}{C_{D}} + [1 - f_{w}(26)] \cdot \frac{{}^{2}b_{ij}^{*}}{C_{D}} + f_{w}(26)({}^{w}b_{ij}) \cdot \dots \cdot (37)$$

ここで,補正項の具体的な表式は以下の通りである.

$${}^{w}b_{ij} = -\frac{1}{2} \left(\frac{d_{i}d_{j}}{d_{k}d_{k}} - \frac{d_{ij}}{3} \right) - \frac{0.25 C_{w0}}{1 + C_{w0} \sqrt{S^{**2} \Omega^{**2}}} \left(S_{ik}^{**} \Omega_{kj}^{**} - \Omega_{ik}^{**} S_{kj}^{**} \right)$$
$$+ \frac{1.5 C_{w0}}{1 + C_{w0} S^{**2}} \left(S_{ik}^{**} S_{kj}^{**} - \frac{1}{3} S^{**2} d_{ij} \right)$$

$$d_{i} = \frac{\partial d}{\partial x_{i}}, \quad S_{ij}^{**} = \boldsymbol{t}_{w} S_{ij}, \quad \Omega_{ij}^{**} = \boldsymbol{t}_{w} \Omega_{ij}$$
$$\boldsymbol{t}_{w} = [1 - f_{w} (15)] \frac{k}{\boldsymbol{e}} + f_{w} (15) \sqrt{\frac{\boldsymbol{n}}{\boldsymbol{e}}}, \quad C_{w0} = 0.5$$

なお,座標系が W_k で回転する乱流場を計算する場合には, 先述の渦度テンソル Ω_{ij} を $\Omega_{ij} - \left(\frac{4-C_4}{2-C_4}\right) \mathbf{e}_{ijk} \Omega_k$ のように補正 することを考慮し,先ほど求めた値を用いて,

として計算を行った.

式(20),(21)におけるモデル関数 f_e およびモデル係数 s_k, s_e は以下の通りである.

$$f_{e} = \left[1 - 0.3 \exp\left\{-\left(\frac{R_{t}}{6.5}\right)^{2}\right\}\right] \left\{1 - f_{w}(3.7)\right\}$$
$$\mathbf{s}_{k} = \frac{1.6}{1 + 7.5 f_{w}(5)} \quad , \qquad \mathbf{s}_{e} = \frac{1.6}{1 + 6 f_{w}(5)}$$

その他のモデル定数については Abe et al.⁽⁵⁾と同じものを用いた.

4.計算結果ならびに考察

先のモデルを用いて,まずレイノルズ数11500,ロスビー数0.0の回転のないチャネル乱流の計算を行った.計算結果から得られた平均速度分布と乱流強度分布を,島⁽³⁾のRSMによるものと比較してFig.7,8に示す.図からわかるように,今回用いたEASMは,基本的な乱流場では壁面近傍の乱れの非等方性についてもRSM相当の予測精度を示している.

次にレイノルズ数 11500, ロスビー数-0.21 の回転を伴った チャネル乱流の計算を行った.平均速度分布と乱流強度分布 を RSM と比較して Fig.9 に示す.

Fig.9-(a)より,チャネル中央付近の平均速度分布について, EASM が RSM と基本的に同様の傾向を示していることがわ かる.ただし,EASM の結果の方がより直線的な分布をして いる.また,安定側(y=0)の壁近傍では不自然な湾曲も見受け られる.Fig.9-(b)の乱れに関しては,定量的な差異はあるも のの,非等方性の基本的な傾向は概ね再現できている.なお, 壁近傍の精度低下については,低 Re 数型モデルのモデル関 数の問題が第一であると予想される.

Fig.10 に RSM と EASM の非等方テンソルの分布を示す. この結果からも, EASM が本ケースに関して RSM と同程度 の非等方性を表現できていると考えられる.ただし,島⁽¹⁾も 述べているように,本ケースに関しては島⁽¹⁾の RSM でも必 ずしも良い精度が得られているとは言えず,先の低 Re 数型 モデル関数の問題と併せて今後さらなる詳細な検討が必要 であると考えられる.

5 . 結言

EASM と RSM の間のモデル係数の関係を比較・検討し, それを反映させて回転チャネル乱流の計算を行った.得られ た結果から,EASM は平均速度分布や乱れの非等方性につい て基本的に妥当な結果を呈し得ることが確認された.しかし ながら,今回検討した EASM は,壁面近傍の予測精度をは じめ幾つかの点で不十分な点が見受けられ,今後さらなる議 論とモデルの改良が必要であると考えられる.

Fig.9 Comparison of the results between RSM and EASM: (a) mean velocity; (b) turbulence intensities.

Fig.10 Comparison of anisotropy-tensor distributions: (a) RSM; (b) EASM.

参考文献

- (1) 島, 機論, 55-516 B(1989), pp.2198-2204.
- (2) Lumley, J.L., Advance in Applied Mech., 18 (1978), 123, Academic Press.
- (3) Hattori, H. and Nagano, Y. 1995, JSME Int. Journal, Ser. B, 38 (1995), pp.518-524.
- (4) Gatski, T.B. and Speziale, C.G., J. Fluid Mech., 254 (1993), pp. 59-78.
- (5) Abe, K., Kondoh, T. and Nagano, Y., Int. J. Heat and Fluid Flow, 18 (1997), pp. 266-282.