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Turbulent separated flows around a 6:1 prolate spheroid are investigated using an unstructured grid CFD 
method. The RANS equations are solved for incompressible viscous flows. The artificial compressibility is 
introduced in the continuity equation and cell-centered finite-volume method on unstructured grid is used 
for spatial discretization. The Spalart-Allmaras one-equation turbulence model is employed for the 
Reynolds stress. The computational results are compared with experimental data and the physics of 
three-dimensional turbulent flow separation is confirmed. Two angles of attack is considered and the effects 
are investigated. The modification of the Spalart-Allmaras model is added to improve the performance for 
the vortical flow structure. 

 
1. INTRODUCTION 

The flow separation around a three-dimensional (3D) body is 
one of the most interesting and challenging problems in fluid 
mechanics. The separated flow around a body results in many 
phenomena in aero- and hydrodynamics, such as the drag increase, 
lift loss, and unsteady fluctuation, etc. Therefore, it is of great 
importance for designers to understand and predict flow separation 
around a surface ship, submarine, airplane, or other fluid dynamic 
devices.  

The separation can be defined as the entire process of departure 
or breakaway, or the breakdown of boundary layer flow(1). 
Researches on two-dimensional (2D) flow separation have 
provided basic and important characteristics of the phenomenon. 
However, 3D flow separation is quite different from its 2D 
counterpart in that, primarily,: the type of separation varies with 
Reynolds number, angle of attack, and body geometry; the cross 
flow separation occurs and exerts great influence on the 
post-separation region and wake; and the flow reversal and 
zero-shear point are not always present with the separation.  

Considering the current status of computational fluid dynamics 
(CFD) techniques and the increasing demands for a better 
prediction method for 3D turbulent flow separation, the objectives 
of the present study are: (a) to apply an unstructured grid CFD 
method to 3D flow separation around a body of revolution; (b) to 
validate the computational results by comparison with theoretical 
study and experimental data; and (c) to investigate the effects of 
angle of attack on the separation pattern and forces and moments. 
Although the geometry of interest in the present study is simple, an 
unstructured grid method, which is regarded as an alternative to 
structured grid methods for complex geometry problems, is 
employed here because further application to practical problems is 
the ultimate goal in mind. 

Numerical method employed is presented next followed by 
results and concluding remarks.       

 
2. NUMERICAL METHOD 

The governing equations are 3D RANS equations for 
incompressible flow. In order to couple a pressure field with the 
corresponding velocity one, artificial compressibility is introduced 
into the continuity equations. The finite volume method is adopted 
for spatial discretization. Flow variables are stored at the center of 
each cell. For inviscid fluxes, the second order upwind scheme 
based on the flux-difference splitting of Roe(2) with the MUSCL 
approach is employed. Viscous fluxes are evaluated by the second 
order central scheme. The time derivative terms are discretized 
using Euler backward and the second order backward scheme for 
pseudo- and physical time derivative terms, respectively. After the 
discretization, the linear equation is solved by the Symmetric 
Gauss-Seidel iteration. The pseudo-time iteration continues until 
the averaged pressure residual between pseudo-time iteration, i.e., 
continuity equation imbalance, reaches convergence criterion or the 

iteration number reaches its pre-set maximum. The eddy viscosity 
for turbulent flow calculations is obtained by the one-equation 
Spalart-Allmaras model(3) and its modification proposed by 
Dacles-Mariani et al.(4). For detailed description of numerical 
methods, readers are recommended to refer to Hino(5) and Rhee and 
Hino(6). 
 
3. RESULTS 

The solution domain looks like a half of an egg, i.e., a 
half-domain, with extent 5.4L/x5.1 ≤≤− , 0.2L/y0.2 ≤≤− , 

0.2L/z0 ≤≤  and the origin at the nose of the spheroid. In order to 
exploit the simplicity of the geometry, a structured grid with 
hexahedral cells, i.e., (streamwise×normal×circumferential) = 
(90×64×60) = 345,600 cells, was generated. The average minimum 
spacing in the normal direction is about 1×10-5. Note that in the 
results presentation, φ is 0° at the symmetry plane on the windward 
side and 180° on the opposite side. No-slip condition with 
zero-gradient pressure is imposed on the solid wall and a symmetry 
condition is applied on the symmetry plane. On the outer boundary, 
the free-stream condition with a specified angle of attack (α) is 
given up to x/L=0.0 and a simple extrapolation is done on the 
remaining outer boundary. The computational conditions are α=10°, 
20°, and Reynolds number Re=U0L/ν=4.2×106.  

All the results of turbulent flow are computed using the 
modified SA model and compared with experimental data(7). The 
correction parameter for νt production term (Cvor) in the turbulence 
model is set to be 20 based on the authors’ experience in CFD 
simulations for surface ship hull forms. The transition to turbulent 
flow is forced at x/L=0.2 following the experiments. 

 
Table 1. Lift, drag, and yaw moment coefficients. 

α (°) 10 20 

CD,total 4.71×10-4 1.22×10-3 
CD,pressure 1.53×10-4 8.70×10-4 
CD,friction 3.18×10-4 3.47×10-4 
CL,total 7.85×10-4 2.84×10-3 

CL,pressure 6.81×10-4 2.64×10-3 
CL,friction 1.05×10-4 2.02×10-4 
Mz,total -8.86×10-4 -1.35×10-3 

Mz,pressure -8.80×10-4 -1.34×10-3 
Mz,friction -5.80×10-6 -8.00×10-6 
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moment YawM ρ  coefficients at the two α’s. As 

Matsumura et al.(8) pointed out, CD and CL increase non-linearly 
with increasing α, mainly due to the large increase of pressure component, 
which is subject to the separation pattern. 

The skin friction lines on the whole body are presented in Fig. 1. 
The inflected lines on the fore-body are due to the turbulence 
stimulation. The general pattern is similar to that for laminar 
flow(6); however, the separation lines are moved to the leeward and 
backward, which is analogous to the delayed separation on a sphere 
in turbulent flow. Also the weak secondary separation α=10° is 
consistent with the report of Chesnakas and Simpson(7). 

Fig. 2 presents the pressure coefficient Cp contours on the 
whole body. Compared to that for laminar flow, the peak value and 
the favorable/adverse pressure gradients in the streamwise and 
circumferential directions are larger in the turbulent flow. Also 
noteworthy at α=20° is the inflection in contour lines near the 
primary and secondary separation lines, which confirms the 
relations between the pressure, pressure gradient, and separation 
line(9). 
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Fig. 1 Skin friction lines on the whole body. 
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Fig. 2 Cp contours on the whole body. 
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Fig. 3 Comparison of pressure coefficient. 

 
The Cp at x/L=0.600 and 0.772 is compared with the 

experimental data and presented in Fig. 3. The agreement is 
qualitatively good, and the primary (φ=123°) and secondary 
(φ=145°) separation locations can be detected by the pressure 
gradient, since Cp becomes almost flat past the separation. However, 
the present results show somewhat consistent difference from the 
experimental data, and the reason may be due to a difference in the 
reference pressure. The increasing difference with the increasing α 
is expected from the fact that the turbulence anisotropy increases 
with increasing α and x/L(7), i.e., due to the strong correlation 
between turbulence anisotropy, separation line, vortical flow 
structure, and pressure field. 

Fig. 4 presents the skin friction coefficient Cf at x/L=0.400, 

0.600 and 0.772, and the comparison with the experimental data. It 
should be noted here that Cf from the experiment was calculated 
using the velocity profiles fitted to a Spalding type wall law, and it 
may cause the consistent difference in the comparison as shown in 
the figure. As for Cp, the agreement is qualitatively good, and the 
locations of primary and secondary separation are well detected by 
the local minima of Cf lines(9). However, the peak values for α=20° 
are under-estimated, which is again attributed to the strong 
turbulence anisotropy. 
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Fig. 4 Comparison of skin friction coefficient. 
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Figure 5. Comparison of flow angle. 

 
Fig. 5 presents the wall-flow angle βw, i.e., the direction of the 

flow at the wall relative to the streamwise direction, at x/L=0.400, 
0.600 and 0.772, and the comparison with the experimental data. 
Since the wall-flow is sensitive to minor variations inside separated 
regions, it is rather difficult to correctly estimate βw. The present 
results, however, show surprisingly good agreement with the 
experimental data, except at α=20° and x/L=0.772, where the grid 
resolution in the streamwise direction may not be enough to detect 
the delicate changes of the flow direction there. 

In Figs. 6(a) and 6(b), the total velocity |U| contours and the 
V-W vectors on the planes perpendicular to the body surface at 
x/L=0.600 and 0.772 are presented and compared with the 
experimental data. The upper- and lower half in each figure 
corresponds to the present results and experimental data, 
respectively. Note that the planes in the figures are different from 
the usual cross-plane sections that are perpendicular to the 
streamwise axis. At α=10° and x/L=0.600, the primary separation 
is observed, and it is developed to the vortex at x/L=0.772. The 
lower velocity region and the shape of |U| contours agree well with 
the experimental data. At α=20° and x/L=0.600, the detached 
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vortex and incipient secondary separation are observed, and at 
x/L=0.772 the vortex detached from the primary separation is 
already out of the range and the secondary separation is fully 
developed at φ=145°. Again, the agreement between the present 
results and the data is not as good as that for α=10°, as for the other 
flow variables. 
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Fig. 6(a) Total velocity contours and V-W vectors on the planes 
perpendicular to body surface at α=10° 

 (upper half: present result,  
lower half: experimental data(7)). 

 
4.  CONCLUDING REMARKS 

Turbulent flow separations are investigated using an 
unstructured grid CFD method. Turbulent flow results are different 
from that of laminar flow in that the separation lines are moved 
leeward and backward and that the extent of vortices is smaller. The 
comparison with experimental data shows good agreement and 
confirms that the present method can be used to predict the 3D 
turbulent separated flows behind various 3D bodies.  

Future work includes: application to more practical geometry 
such as various surface and underwater ships; application to 
unsteady turbulent separated flows such as the separation in 
maneuvering motion; and improvement of turbulence modeling for 
a better prediction in the region where strong turbulence anisotropy 
exists.   
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Fig. 6(b). Total velocity contours and V-W vectors on the planes 
perpendicular to body surface at α=20°   

(upper half: present result,  
lower half: experimental data(7)). 

 
 


