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Numerical Computation on Recirculation Flow Structures
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‘Craya-Curtet’ number (Ct) has been described as one of the most suitable universal similarity parameters for co-
axial confined jets.  This work shows that the formation of the recirculation zone is greatly influenced by Reynolds
number, and not by Ct alone under laminar flow conditions.  If the length scale of the thermo-fluid machinery is
decreased, for example, in micro jet flame combustors, the corresponding Reynolds number, Re, becomes smaller.
In the case of Re > 50, the length of the recirculation zone is found proportional to Re number for a fixed value of Ct.
In the limit of very small Re number, the recirculation zone disappears, unlike turbulent flow cases.

1. Introduction

Fundamental investigation into confined jet interactions at low
Reynolds number has particular value for the development of
micro-jet pumps and micro combustors.  The co-axial confined
jet, which is perhaps one of the simplest possible configurations,
was selected for this study.

Figure 1 gives a schematic illustration for the computational
domain. Under certain conditions where the momentum of the
primary (center) jet is sufficiently in excess of the momentum of
the secondary (annular) jet, an axisymmetric recirculation zone
appears on the wall of the tube as shown in the figure.
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Fig. 1 Co-axial confined jet configuration (1: Primary jet; 2:
Secondary jet. Inlet velocity profiles are the fully developed
laminar profiles for circular and annular tubes).

For the present work, Reynolds number is based on the mean
velocity, U, averaged over the entire tube cross-section and on the
diameter of the tube, D.

2. Mathematical Model

In order to consider the simplest case, the flow is taken to be
steady and laminar. All fluid properties are assumed constant.
Governing equations for axial and radial momentum are solved
together with the continuity equation.

Equations 1 and 2 give the Navier-Stokes equations for
conservation of momentum.
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Equation 3 gives the constant property continuity equation in
cylindrical coordinates.
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3. Boundary Conditions

The inlet velocity profiles are for fully developed tube flow
(primary stream) and fully developed annular flow (secondary
stream) as shown in Fig. 1.  The radial velocity component is
zero over the entire inlet cross-section (i.e. at x = 0).  The
computational domain extends to 33 tube diameters downstream
of the inlet, and a zero normal gradient boundary condition is
assumed at the exit.

4. Numerical Technique

For the solution of Eqs. (1) to (3), the method of finite volumes is
used in conjunction with Patankar’s SIMPLE technique1. For the
discretization of the convection and diffusion terms, a first-order
hybrid differencing scheme is employed1.  Code validation was
performed by comparison with fully developed pipe flow data and
experimental velocity distributions for the confined laminar jet by
Shavit and Lavan2.

A computational grid of 200 by 54 cells (x×r) is used to discretize
the domain, the grid spacing being progressively finer closer to the
inlet.  For the very low Reynolds number calculations (Re<10),
the length of the computational domain is reduced whilst
maintaining the same number of grid points to preserve the fine
resolution.

5. Effect of Craya-Curtet Number

The Craya-Curtet number is a well-known similarity parameter for
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the co-axial confined turbulent jet.  In the present work the effect
of this parameter upon the confined laminar jet is examined.  The
definition of Ct used3, is given in Eqs. (4) to (6).
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For the turbulent case, Uf is defined as the inlet velocity at the
constant velocity part of the co-current stream.  Here it is taken
to be the mean velocity of the co-current stream as given in Eq.
(7).  To maintain consistency with this assumption, when
evaluating the integral in Eq. (5), it is also assumed that the
velocity profile is flat over the entire secondary stream at the
entrance.  For the present calculations, the effect of the secondary
stream profile is found to be small giving some justification to this
assumption.

In Eqs. (5) - (7), ‘Ao’ is the entire cross-sectional area of the tube
and ‘A2’ is the cross-sectional area of the secondary stream at the
entrance (i.e. ‘Ao’ minus the primary jet cross-sectional area).
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Figure 2 shows the effect of Craya-Curtet number on the flow
field for a Reynolds number of 50.  For all three cases in Fig. 2,
the mass flow rates of the two streams are kept constant, the ratio
of the primary flow to the secondary flow (m1/m2) being 0.32.
The Craya-Curtet number is altered by adjusting the diameter of
the primary jet.  For a smaller diameter and the same flow rate,
the momentum of the primary jet increases and hence Ct
decreases.

Fig. 2 Effect of Ct on flow field (Re = 50, m1/m2 = 0.32, Craya-
Curtet number is altered by varying the nozzle diameter of the
primary jet. (A) d/D = 0.074; (B) d/D = 0.111; (C) d/D = 0.222.
Mass flow-rates of the two streams are the same for all three cases.
Reynolds number is calculated on mean axial velocity and the
diameter of the tube).

In Fig. 2 (A) and (B), a weak recirculation zone appears on the

tube wall.  In case (C) of Fig. 2 with Ct = 0.85, the recirculation
does not appear.  This is consistent with observations by Curtet
and others of the turbulent case where for Ct less than about 0.75
recirculation occurs downstream of the inlet on the duct wall.3,4 (It
should be noted however, that the critical value of Ct for which the
recirculation appears, reported in the literature, ranges from 0.75
to 0.976).3

Figure 3 shows the effect of the Craya-Curtet number on the
friction coefficient at the wall.  The three curves represent the
three cases given in the previous figure (Fig. 2) for a Reynolds
number of 50.  ‘Cf’’ is defined as given in Eq. (8).
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For fully developed flow, Cf takes on a value of 16/Re which
agrees to within 0.05% of the calculated downstream values
shown in Fig. 3.

At the mixing zone entrance (i.e. at x = 0), the wall friction
coefficient increases slightly as the diameter of the primary jet is
increased.  This is because the secondary and primary mass flow
rates are the same for the three cases, and hence the velocities in
the secondary annular jet increase as the cross-sectional area is
shrunken following the increase of the primary jet area.

The points where the curves intercept the x-axis correspond to the
separation and reattachment points for the recirculation zone.
Quite clearly in Fig. 3, the separation point moves only slightly
upstream with a decrease in Craya-Curtet number from 0.4 to 0.27.
The reattachment point, on the other hand, is affected drastically
by Ct moving from about 4.5 tube diameters downstream of the
entrance to about 8 tube diameters as Ct is varied from 0.4 to 0.27.
This is quite different to the turbulent case where the reattachment
point moves only slightly as Ct is decreased and the separation
point moves remarkably upstream as Ct is decreased.

Also, all three curves in Fig. 3, display a minimum (or maximum
negative) friction coefficient located at a point which moves
downstream as Ct is decreased.
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Fig. 3 Wall friction coefficient – Effect of Ct (Re = 50 and m1/m2
= 0.32).

6. Effect of Reynolds Number

For the case of the developing flow in a tube, the ‘hydrodynamic
entry length’ extends approximately in proportion to Reynolds
number.  This proportionality breaks down if the flow becomes
turbulent or under creeping flow conditions.5 Also, for the case of
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the sudden expansion duct, the reattachment point of the eddy
forming in an axisymmetric backward facing step moves
downstream in proportion to Reynolds number.6 Macagno and
Hung6 found the distance to the reattachment point to be almost
directly proportional to Reynolds number between 40 and 200 and
curving upward slightly for Re < 40 in which Re is based on the
diameter and mean velocity of the smaller duct).
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Fig. 4 Wall friction coefficient – Effect of Reynolds number (Ct =
0.4 and m1/m2 = 0.32).

The same kind of proportionality with respect to Reynolds number
is observed here for the case of the axisymmetric confined laminar
jet.  Figure 4 shows the skin friction coefficient at the wall for the
cases of Re = 50, 100 and 200 where the relative proportion of the
primary and secondary fluid flow is kept constant.  The ratio of
d/D is also constant so that Ct is the same for all three cases.

Quite clearly in Fig. 4, for the range of Reynolds number
investigated, the distances to both the separation and reattachment
points increase in the downstream direction in a virtually linear
proportion with Reynolds number.  This point is further
highlighted in Fig. 5.  Here, the x-coordinates are divided by
Reynolds number, and the skin friction coefficient is normalized
with respect to the value for fully developed tube flow (16/Re).
The three curves are remarkably similar with a slightly closer
correlation for the cases of Re = 100 and 200.
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Fig. 5 Normalized skin friction coefficient – Relation to Reynolds
number (Ct = 0.4 and m1/m2 = 0.32).

The close matching of the curves in Fig. 5 suggests a strong

correlation between the velocity profiles at points located with the
same value of x/(D.Re).  Figure 6 compares the dimensionless
axial velocity distributions at various points for Re = 50 and 200,
downstream in the axial direction having the same value for
x/(D.Re).  In this figure, the solid lines are for a Reynolds
number of 50 and the dashed lines are for a Reynolds number of
200.  At almost all of the positions considered, the agreement
between the two cases is so close that it is difficult to distinguish
between the two lines.  Even at the axial position ‘C’, which is
located approximately half way between the separation and
reattachment points, the agreement for the reverse flow is also
very close.
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Fig. 6 Axial velocity distributions (Ct = 0.4, m1/m2 = 0.32, Re = 50
(solid lines) and Re = 200 (dashed lines)).

Having obtained such a close correlation for dimensionless axial
velocities, u/U, with respect to the dimensionless coordinate,
x/(D.Re), mass conservation would suggest that there will be some
similarity for the radial component of velocity for different
Reynolds number and the same Craya-Curtet number.  Figure 7
gives the dimensionless radial velocity (v/U).Re in terms of axial
coordinate, x/(D.Re) for four different radial positions.  Again
there can be seen a clear correlation between the two Reynolds
number cases except the largest differences in the near entrance
region.

It is also apparent from Fig. 7 that the close matching of the radial
velocity curves applies at different radial positions across the
diameter of the tube. In Fig. 7, the position ‘A’ (r/D = 0.042) is
inside the primary jet (cf. (d/2)/D = 0.055) and hence the radial
component is positive for all downstream values of x, tending to
zero as x becomes large.  The positions ‘B’ and ‘C’ begin outside
the primary jet and hence the radial velocity takes on relatively
large negative values just downstream of the entrance, increasing
in closer proximity to the jet.  A little further downstream, the jet
width grows to coincide with the radial positions ‘B’ and ‘C’ and
hence the velocities become positive.  As the radial distance from
the jet center is increased, the influence of the jet upon the radial
velocity diminishes as shown by the line for position ‘D’ in Fig. 7.
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For all radial positions, the boundary condition at x = 0 is that v =
0.  Because of the scaling and the large jump in radial velocity
immediately downstream of the entrance this is a little difficult to
decipher from Fig. 7.  In fact, this sudden jump in the radial
velocity profile calls into question the practical possibility of the
zero radial velocity inlet boundary condition.  The radial velocity
distribution within the jets upstream of the entrance to the mixing
region may in fact be influenced by the downstream conditions.
Hence, as suggested by Shavit and Lavan2, ideally the
computational domain should be extended a little upstream of the
jet nozzle exit.
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Fig. 7 Dimensionless radial velocity distributions (Ct = 0.4, m1/m2
= 0.32, Re = 50 (solid lines) and Re = 200 (dashed lines)).

7. Low Reynolds Number Limit

Figure 8 gives the normalized skin friction coefficient against the
dimensionless axial distance, x/(D.Re), for low Reynolds number
(1 < Re < 200) and a fixed Craya-Curtet number (Ct = 0.4).  As
Reynolds number is reduced to below 30, the proportionality of
the eddy size with respect to Reynolds number diminishes,
although the remarkable similarity was shown in Fig. 5 for the
cases, 50 < Re < 200. Between the cases of Re = 10 and 5, the
recirculation zone vanishes altogether.  If the flow rate is reduced
even further to a Reynolds number of 2, the location of the
minimum value for Cf moves downstream with respect to the
dimensionless distance, x/(D.Re).
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Fig. 8 Normalized skin friction coefficient – Effect of further
reducing Reynolds number (Ct = 0.4 for all cases).

This result is consistent with the experimental findings of other
researchers for the case of developing laminar flow in a tube
where the proportional lengthening of the flow field with respect
to Reynolds number diminishes as Reynolds number becomes
very small5.  Macagno and Hung6 made the same observation
results in the case of a sudden expansion duct.

It is interesting to note here, that for the case of Re < 10 in Fig. 8,
the length of the recirculation zone is less than one tube diameter.

8. Discussion

The expansion of the flow field in approximate proportion to
Reynolds number shown in Figs. 4 to 7 can be explained in part
by non-dimensionalizing the constant property Navier-Stokes
equations in terms of the following dimensionless parameters.
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In terms of these dimensionless groups, the boundary conditions
for the three examples given in Figs. 4 to 7 are identical.

This particular scheme used here for non-dimensionalization is
almost similar to the one proposed by Pai and Hsieh7 (1972),
which produces two-dimensional ‘boundary layer’ type equations
(independent of Reynolds number) suitable for analysis of laminar
jets with and without free stream. Moreover, Langhaar8 (1942), for
the analysis of developing flow in a tube, used x/(a.Re) for the
dimensionless axial coordinate (where ‘a’ is the radius of the
tube).

Using the above transformations the Navier-Stokes equations, Eq.
(1) and (2) become as follows:
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The time dependent terms are retained here to show that the
analysis will be applied also to the unsteady case.

The continuity equation (Eq. (3)) transforms very simply into the
following equation.
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In Eqs. (10) to (12), there are three terms which still contain
Reynolds number:
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If these particular terms can be neglected, or canceled each other
out, perfect agreement for the flow field should be found in terms
of x*, u* and v* for the same boundary conditions, irrespective of
the Reynolds number.  In Langhaar’s analysis of the developing
flow in a tube8, the second derivative of velocity in the axial
direction and the radial pressure gradient were neglected.  Also,
Pai and Hsieh7 neglected all the pressure terms and the second
derivative of the velocity gradient in the axial direction for the
analysis of the free laminar jet and the laminar jet with free stream.
Following their treatment, the terms listed above disappear for the
cases of the ‘free laminar jet’ and ‘developing laminar flow in a
tube’. If we can assume that the sum of these terms containing
Reynolds number is also small (or also increased in proportion to
Re) for the conditions considered here, we can gain some insight
as to the reason behind the lengthening of the flow field in
approximate proportion to Reynolds number.

One would expect these three terms to be largest at the very
entrance to the tube – which may explain the differences in the
dimensionless radial velocities near the entrance shown in Fig. 7.
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Fig. 9  Effect of neglecting second derivatives of velocity in the
axial direction.  (Solid lines – all terms included; dotted lines –
second derivatives of velocity neglected.  For Re = 200, the
dotted line falls on top of the solid line).

Quite clearly, for creeping flow conditions the second derivative
velocity terms containing Re in Eqs. (10) and (11) cannot be
neglected, as the size of these terms may increase in proportion to
the inverse square of Reynolds number.

Figure 9 shows the effect of neglecting the second derivatives of
velocity in the axial direction.  For Re = 10, the effect is
remarkable but for Re = 200 the terms have negligible effect on
the wall friction coefficient. Hence, the increasing importance of
these terms explains why the recirculation disappears as Reynolds
number becomes very small.

9. Practical Implications

Presently at the authors’ laboratory of Kyoto University a multiple
jet can-type combustor is being investigated for micro applications.
Figure 10 shows a possible inlet geometrical configuration for the
miniature combustion chamber.  The fuel enters through the jet at
the center and air through the surrounding six jets.  Should such a
device be suitably designed to operate under low Reynolds
number laminar flow conditions, the present results would have a
number of implications.

Figure 11 shows the calculated flow and mixing patterns for the
inlet geometry illustrated in Fig. 10.  Three Reynolds number
cases are considered – Re = 50, 100 and 200.  For all cases, the
ratio of the primary and secondary mass flows is identical (m1/m2
= 0.0465). This value corresponds to the mass flow rates for a
methane-air flame with an equivalence ratio of 0.8.  Calculations
were performed for constant density three-dimensional laminar
flow.  The selected plane in the θ direction is between two
adjacent secondary stream jets.

           

DD

Fig. 10 Possible inlet configuration for multiple jet miniature can-
type combustor.
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Fig. 11 Flow and mixing patterns for geometry given in Fig. 10
(Contours represent mass fraction of gas originating in the primary
(center) jet: X1 = upstream stagnation point, X2 = downstream
stagnation point, and X3 = Reattachment point of recirculation
near wall).

The flow field shown in Fig. 11 is very complex with recirculation
zones near the center of the tube and near the tube wall.  In front
of the primary jet a stagnation point, X1, appears. Further
downstream, another stagnation point, X2, appears, which is also
associated with the recirculation at the center.  The position ‘X3’
gives the reattachment point for the recirculation at the wall of the
tube.  For the Re = 50 case, the flow pattern near the wall is
different to the other cases so ‘X3’ is not marked.

In Fig. 11, the effect of changing Reynolds number from 100 to
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200 is to move the positions ‘X2’ and ‘X3’ further downstream
roughly in proportion to the Reynolds number.  The upstream
stagnation point, ‘X1’, however, moves only slightly with an
increase in the flow rate for all three cases. This is perhaps
because the second derivatives of velocity are very important in
this region.

The change in the patterns of both velocity and mass fraction for
the Re = 50 case in the vicinity of wall are further evidences of the
low Reynolds number effects discussed in this paper.

10. Conclusions

1. While the ‘Craya-Curtet’ number appears to be an important
parameter for the co-axial confined laminar jet, Reynolds
number also plays a key role.

2. The primary effect of Reynolds number on the laminar cases
investigated is to expand the flow field in the downstream
direction with an increase of the Reynolds number.  Close
proportionality with Reynolds number has been demonstrated
for the co-axial confined jet with recirculation (Ct = 0.4) for
Reynolds number ranging from 50 to 200 (based on the outer
tube diameter and bulk mean velocity).

3. In the low Reynolds number limit, the recirculation zone
disappears for a Reynolds number between 5 and 10 under the
Craya-Curtet number of 0.4.  This is shown to be connected
with an increasing importance of the second derivatives of
velocity in the axial direction at such low Reynolds numbers.
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